Risk aversion and Bitcoin returns in extreme quantiles

dc.contributor.authorBouri, Elie
dc.contributor.authorGupta, Rangan
dc.contributor.authorLau, Chi keung marco
dc.contributor.authorRoubaud, David
dc.contributor.emailrangan.gupta@up.ac.zaen_US
dc.date.accessioned2022-08-02T07:59:25Z
dc.date.available2022-08-02T07:59:25Z
dc.date.issued2021-09-17
dc.description.abstractWe study whether level of risk aversion can be used to predict Bitcoin returns using copulas and quantile-based models. We find evidence of predictability when the market return is at extreme quantiles. Further analyses show that the cross-quantilogram is similar when risk aversion is at the low or medium level for various quantiles of Bitcoin returns. The predictability is positive when the risk aversion is at very low level. However, predictability becomes negative when both the risk aversion and Bitcoin returns are very high, suggesting that when risk aversion and Bitcoin returns are at very high levels, Bitcoin is less likely to have large gains.en_US
dc.description.departmentEconomicsen_US
dc.description.librarianam2022en_US
dc.description.urihttp://www.accessecon.com/pubs/eb/default.aspx?en_US
dc.identifier.citationBouri, E., Gupta, R., Lau, C.K.M. & Roubaud, D. 2021, 'Risk aversion and Bitcoin returns in extreme quantiles', Economics Bulletin, vol. 41, no. 3, pp. 1374-1386.en_US
dc.identifier.issn1545-2921
dc.identifier.urihttps://repository.up.ac.za/handle/2263/86632
dc.language.isoenen_US
dc.publisherEconomics Bulletinen_US
dc.rightsThe Economics Bulletin is an open-access letters journal .en_US
dc.subjectRisken_US
dc.subjectAversionen_US
dc.subjectBitcoinen_US
dc.subjectReturnsen_US
dc.titleRisk aversion and Bitcoin returns in extreme quantilesen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Bouri_Risk_2021.pdf
Size:
418.44 KB
Format:
Adobe Portable Document Format
Description:
Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: