Ridge-type pretest and shrinkage estimation strategies in spatial error models with an application to a real data example

dc.contributor.authorAl-Momani, Marwan
dc.contributor.authorArashi, Mohammad
dc.date.accessioned2025-02-12T04:51:56Z
dc.date.available2025-02-12T04:51:56Z
dc.date.issued2024-02
dc.descriptionDATA AVAILABILITY STATEMENT : The dataset is accessible through the R-Package “spdep”.en_US
dc.description.abstractSpatial regression models are widely available across several disciplines, such as functional magnetic resonance imaging analysis, econometrics, and house price analysis. In nature, sparsity occurs when a limited number of factors strongly impact overall variation. Sparse covariance structures are common in spatial regression models. The spatial error model is a significant spatial regression model that focuses on the geographical dependence present in the error terms rather than the response variable. This study proposes an effective approach using the pretest and shrinkage ridge estimators for estimating the vector of regression coefficients in the spatial error mode, considering insignificant coefficients and multicollinearity among regressors. The study compares the performance of the proposed estimators with the maximum likelihood estimator and assesses their efficacy using real-world data and bootstrapping techniques for comparison purposes.en_US
dc.description.departmentStatisticsen_US
dc.description.librarianam2024en_US
dc.description.sdgNoneen_US
dc.description.urihttps://www.mdpi.com/journal/mathematicsen_US
dc.identifier.citationAl-Momani, M.; Arashi, M. Ridge-Type Pretest and Shrinkage Estimation Strategies in Spatial Error Models with an Application to a Real Data Example. Mathematics 2024, 12, 390. https://DOI.org/10.3390/math12030390.en_US
dc.identifier.issn2227-7390
dc.identifier.other10.3390/math12030390
dc.identifier.urihttp://hdl.handle.net/2263/100749
dc.language.isoenen_US
dc.publisherMDPIen_US
dc.rights© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.en_US
dc.subjectSpatial error modelen_US
dc.subjectAsymptotic performanceen_US
dc.subjectBootstrapping; pretesten_US
dc.subjectRidge estimatoren_US
dc.subjectShrinkageen_US
dc.titleRidge-type pretest and shrinkage estimation strategies in spatial error models with an application to a real data exampleen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
AlMomani_RidgeType_2024.pdf
Size:
635.2 KB
Format:
Adobe Portable Document Format
Description:
Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: