Genome defence mechanisms in Basidiomycota fungi, with special reference to Armillaria species

dc.contributor.advisorCoetzee, Martin Petrus Albertus
dc.contributor.coadvisorWingfield, Brenda D.
dc.contributor.coadvisorSteenkamp, Emma Theodora
dc.contributor.coadvisorVan Wyk, Stephanie
dc.contributor.emaillukanyo.makhabane@up.ac.zaen_US
dc.contributor.postgraduateMakhabane, Lukanyo
dc.date.accessioned2023-07-31T07:40:20Z
dc.date.available2023-07-31T07:40:20Z
dc.date.created2023-09
dc.date.issued2023
dc.descriptionDissertation (MSc (Microbiology))--University of Pretoria, 2023.en_US
dc.description.abstractChapter One of this dissertation presents a literature review of aspects of TEs and their important roles in the genome evolution of Basidiomycota and other fungi. The genome defence mechanisms that prevent the expansion and deleterious activity of TEs in fungi are also reviewed. Additionally, the biology, occurrence, and genome evolution of Armillaria species are discussed. Chapter Two deals with research on the occurrence of the RIP mutations and the RIP pathway in selected Armillaria species and related fungi in the Agaricales, the order in which Armillaria species reside. This was achieved by using bioinformatics methods that included a sliding-window approach and alignment-based RIP analyses. The key genes encoding RID (RIP deficient) and DIM-2 (defective in methylation 2) cytosine methyltransferases involved in the RIP process, and those implicated in the MIP process Masc-1 (Methyltransferase from Ascobolus 1) and Masc-2 cytosine methyltransferases were investigated. The findings of this study will contribute to the existing body of knowledge on the taxonomic distribution of RIP in Basidiomycota and its preferred genetic mutation targets. Chapter Three focused on the identification and characteristics of the RNAi pathway genes in Armillaria species and other species from the family Physalacriaceae that previously were shown to employ the RIP mutation mechanism. In addition, the evolution of these genes in relation to other representative species in the Basidiomycota was investigated. This was achieved by performing sequence similarity comparisons, searches for the conserved functional domains of the genes and phylogenetic analysis. The findings from this study lay the foundation for future studies that will focus on characterizing the potential roles of these genes in response to genome defence against TEs in these species.en_US
dc.description.availabilityUnrestricteden_US
dc.description.degreeMSc (Microbiology)en_US
dc.description.departmentForestry and Agricultural Biotechnology Institute (FABI)en_US
dc.description.sponsorshipUniversity of Pretoriaen_US
dc.description.sponsorshipDepartment of Biochemistry, Genetics and Microbiologyen_US
dc.description.sponsorshipForestry and Agricultural Biotechnology Instituteen_US
dc.description.sponsorshipTree Protection Co-operative Programmeen_US
dc.identifier.citation*en_US
dc.identifier.otherS2023
dc.identifier.urihttp://hdl.handle.net/2263/91697
dc.language.isoenen_US
dc.publisherUniversity of Pretoria
dc.rights© 2023 University of Pretoria. All rights reserved. The copyright in this work vests in the University of Pretoria. No part of this work may be reproduced or transmitted in any form or by any means, without the prior written permission of the University of Pretoria.
dc.subjectUCTDen_US
dc.subjectRepeat-induced point mutationen_US
dc.subjectRNA interferenceen_US
dc.subjectGenome evolutionen_US
dc.subjectTransposable elementsen_US
dc.subjectGenome defenceen_US
dc.titleGenome defence mechanisms in Basidiomycota fungi, with special reference to Armillaria speciesen_US
dc.typeDissertationen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Makhabane_Genome_2023
Size:
2.48 MB
Format:
Adobe Portable Document Format
Description:
MSc dissertation:Genome defence mechanisms in Basidiomycota fungi, with special reference to Armillaria species.

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: