Bayesian learning with multiple priors and nonvanishing ambiguity

dc.contributor.authorZimper, Alexander
dc.contributor.authorMa, Wei
dc.contributor.emailalexander.zimper@up.ac.zaen_ZA
dc.date.accessioned2018-01-12T07:58:08Z
dc.date.issued2017-10
dc.description.abstractThe existing models of Bayesian learning with multiple priors by Marinacci (Stat Pap 43:145–151, 2002) and by Epstein and Schneider (Rev Econ Stud 74:1275–1303, 2007) formalize the intuitive notion that ambiguity should vanish through statistical learning in an one-urn environment. Moreover, the multiple priors decision maker of these models will eventually learn the “truth.” To accommodate nonvanishing violations of Savage’s (The foundations of statistics, Wiley, New York, 1954) sure-thing principle, as reported in Nicholls et al. (J Risk Uncertain 50:97–115, 2015), we construct and analyze a model of Bayesian learning with multiple priors for which ambiguity does not necessarily vanish in an one-urn environment. Our decision maker only forms posteriors from priors that survive a prior selection rule which discriminates, with probability one, against priors whose expected Kullback–Leibler divergence from the “truth” is too far off from the minimal expected Kullback–Leibler divergence over all priors. The “stubbornness” parameter of our prior selection rule thereby governs how much ambiguity will remain in the limit of our learning model.en_ZA
dc.description.departmentEconomicsen_ZA
dc.description.embargo2018-10-30
dc.description.librarianhj2018en_ZA
dc.description.sponsorshipERSA (Economic Research Southern Africa)en_ZA
dc.description.urihttp://link.springer.com/journal/199en_ZA
dc.identifier.citationZimper, A. & Ma, W. Bayesian learning with multiple priors and nonvanishing ambiguity. Economic Theory (2017) 64: 409-447. https://doi.org/10.1007/s00199-016-1007-y.en_ZA
dc.identifier.issn0938-2259 (print)
dc.identifier.issn1432-0479 (online)
dc.identifier.other10.1007/s00199-016-1007-y
dc.identifier.urihttp://hdl.handle.net/2263/63518
dc.language.isoenen_ZA
dc.publisherSpringeren_ZA
dc.rights© Springer-Verlag Berlin Heidelberg 2016. The original publication is available at http://link.springer.com/journal/199.en_ZA
dc.subjectEllsberg paradoxen_ZA
dc.subjectKullback–Leibler divergenceen_ZA
dc.subjectBerk’s theoremen_ZA
dc.subjectMisspecified priorsen_ZA
dc.subjectBayesian learningen_ZA
dc.subjectAmbiguityen_ZA
dc.subjectConsistencyen_ZA
dc.subjectSubjective probabilityen_ZA
dc.subjectExpected utilityen_ZA
dc.titleBayesian learning with multiple priors and nonvanishing ambiguityen_ZA
dc.typePostprint Articleen_ZA

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Zimper_Bayesian_2017.pdf
Size:
307.95 KB
Format:
Adobe Portable Document Format
Description:
Postprint Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: