Self-adaptive particle swarm optimization : a review and analysis of convergence

dc.contributor.authorHarrison, Kyle Robert
dc.contributor.authorEngelbrecht, Andries P.
dc.contributor.authorOmbuki-Berman, Beatrice M.
dc.contributor.emailengel@cs.up.ac.zaen_ZA
dc.date.accessioned2018-08-02T11:10:58Z
dc.date.issued2018-09
dc.description.abstractParticle swarm optimization (PSO) is a population-based, stochastic search algorithm inspired by the flocking behaviour of birds. The PSO algorithm has been shown to be rather sensitive to its control parameters, and thus, performance may be greatly improved by employing appropriately tuned parameters. However, parameter tuning is typically a time-intensive empirical process. Furthermore, a priori parameter tuning makes the implicit assumption that the optimal parameters of the PSO algorithm are not time-dependent. To address these issues, self-adaptive particle swarm optimization (SAPSO) algorithms adapt their control parameters throughout execution. While there is a wide variety of such SAPSO algorithms in the literature, their behaviours are not well understood. Specifically, it is unknown whether these SAPSO algorithms will even exhibit convergent behaviour. This paper addresses this lack of understanding by investigating the convergence behaviours of 18 SAPSO algorithms both analytically and empirically. This paper also empirically examines whether the adapted parameters reach a stable point and whether the final parameter values adhere to a well-known convergence criterion. The results depict a grim state for SAPSO algorithms; over half of the SAPSO algorithms exhibit divergent behaviour while many others prematurely converge.en_ZA
dc.description.departmentComputer Scienceen_ZA
dc.description.embargo2019-09-01
dc.description.librarianhj2018en_ZA
dc.description.sponsorshipThe National Research Foundation (NRF) of South Africa (Grant Number 46712) and the Natural Sciences and Engineering Research Council of Canada (NSERC).en_ZA
dc.description.urihttp://link.springer.com/journal/11721en_ZA
dc.identifier.citationHarrison, K.R., Engelbrecht, A.P. & Ombuki-Berman, B.M. Self-adaptive particle swarm optimization: a review and analysis of convergence. Swarm Intelligence (2018) 12: 187-226. https://doi.org/10.1007/s11721-017-0150-9.en_ZA
dc.identifier.issn1935-3812 (print)
dc.identifier.issn1935-3820 (online)
dc.identifier.other10.1007/s11721-017-0150-9
dc.identifier.urihttp://hdl.handle.net/2263/66063
dc.language.isoenen_ZA
dc.publisherSpringeren_ZA
dc.rights© Springer Science+Business Media, LLC, part of Springer Nature 2017. The original publication is available at : http://link.springer.comjournal/11721.en_ZA
dc.subjectParticle swarm optimization (PSO)en_ZA
dc.subjectSelf-adaptive particle swarm optimization (SAPSO)en_ZA
dc.subjectParameter controlen_ZA
dc.subjectConvergenceen_ZA
dc.subjectAlgorithmen_ZA
dc.subjectStability analysisen_ZA
dc.titleSelf-adaptive particle swarm optimization : a review and analysis of convergenceen_ZA
dc.typePostprint Articleen_ZA

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Harrison_SelfAdaptive_2018.pdf
Size:
1.06 MB
Format:
Adobe Portable Document Format
Description:
Postprint Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: