Particle swarm optimization : empirical and theoretical stability analysis

dc.contributor.advisorEngelbrecht, Andries P.
dc.contributor.emailCCLEGHORN@CS.UP.AC.ZAen_ZA
dc.contributor.postgraduateCleghorn, Christopher Wesley
dc.date.accessioned2017-07-12T09:45:51Z
dc.date.available2017-07-12T09:45:51Z
dc.date.created2017-09-03
dc.date.issued2017
dc.descriptionThesis (PhD)--University of Pretoria, 2017.en_ZA
dc.description.abstractParticle swarm optimization (PSO) is a well-known stochastic population-based search algorithm, originally developed by Kennedy and Eberhart in 1995. Given PSO's success at solving numerous real world problems, a large number of PSO variants have been proposed. However, unlike the original PSO, most variants currently have little to no existing theoretical results. This lack of a theoretical underpinning makes it difficult, if not impossible, for practitioners to make informed decisions about the algorithmic setup. This thesis focuses on the criteria needed for particle stability, or as it is often refereed to as, particle convergence. While new PSO variants are proposed at a rapid rate, the theoretical analysis often takes substantially longer to emerge, if at all. In some situation the theoretical analysis is not performed as the mathematical models needed to actually represent the PSO variants become too complex or contain intractable subproblems. It is for this reason that a rapid means of determining approximate stability criteria that does not require complex mathematical modeling is needed. This thesis presents an empirical approach for determining the stability criteria for PSO variants. This approach is designed to provide a real world depiction of particle stability by imposing absolutely no simplifying assumption on the underlying PSO variant being investigated. This approach is utilized to identify a number of previously unknown stability criteria. This thesis also contains novel theoretical derivations of the stability criteria for both the fully informed PSO and the unified PSO. The theoretical models are then empirically validated utilizing the aforementioned empirical approach in an assumption free context. The thesis closes with a substantial theoretical extension of current PSO stability research. It is common practice within the existing theoretical PSO research to assume that, in the simplest case, the personal and neighborhood best positions are stagnant. However, in this thesis, stability criteria are derived under a mathematical model where by the personal best and neighborhood best positions are treated as convergent sequences of random variables. It is also proved that, in order to derive stability criteria, no weaker assumption on the behavior of the personal and neighborhood best positions can be made. The theoretical extension presented caters for a large range of PSO variants.en_ZA
dc.description.availabilityUnrestricteden_ZA
dc.description.degreePhDen_ZA
dc.description.departmentComputer Scienceen_ZA
dc.identifier.citationCleghorn, CW 2017, Particle swarm optimization : empirical and theoretical stability analysis, PhD Thesis, University of Pretoria, Pretoria, viewed yymmdd <http://hdl.handle.net/2263/61265>en_ZA
dc.identifier.otherS2017
dc.identifier.urihttp://hdl.handle.net/2263/61265
dc.language.isoenen_ZA
dc.publisherUniversity of Pretoria
dc.rights© 2017 University of Pretoria. All rights reserved. The copyright in this work vests in the University of Pretoria. No part of this work may be reproduced or transmitted in any form or by any means, without the prior written permission of the University of Pretoria.
dc.subjectParticle swarm optimization (PSO)en_ZA
dc.subjectStability analysisen_ZA
dc.subjectTheoryen_ZA
dc.subjectStability analysis frameworken_ZA
dc.subjectUCTD
dc.titleParticle swarm optimization : empirical and theoretical stability analysisen_ZA
dc.typeThesisen_ZA

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Cleghorn_Particle_2017.pdf
Size:
5.43 MB
Format:
Adobe Portable Document Format
Description:
Thesis

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: