A simple mathematical model for Ebola in Africa

Loading...
Thumbnail Image

Date

Authors

Tsanou, Berge
Lubuma, Jean M.-S.
Moremedi, G.M.
Morris, Neil Kenneth
Kondera-Shava, R.

Journal Title

Journal ISSN

Volume Title

Publisher

Taylor and Francis

Abstract

We deal with the following question: Can the consumption of contaminated bush meat, the funeral practices and the environmental contamination explain the recurrence and persistence of Ebola virus disease outbreaks in Africa? We develop an SIR-type model which, incorporates both the direct and indirect transmissions in such a manner that there is a provision of Ebola viruses. We prove that the full model has one (endemic) equilibrium which is locally asymptotically stable whereas, it is globally asymptotically stable in the absence of the Ebola virus shedding in the environment. For the sub-model without the provision of Ebola viruses, the disease dies out or stabilizes globally at an endemic equilibrium. At the endemic level, the number of infectious is larger for the full model than for the sub-model without provision of Ebola viruses. We design a nonstandard finite difference scheme, which preserves the dynamics of the model. Numerical simulations are provided.

Description

Keywords

Ebola virus (EBOV), Environmental transmission, Dynamical system, Nonstandard finite difference (NSFD), NSFD scheme, Stability

Sustainable Development Goals

Citation

T. Berge, J.M.-S. Lubuma, G.M. Moremedi, N. Morris & R. Kondera-Shava (2017) A simple mathematical model for Ebola in Africa, Journal of Biological Dynamics, 11:1, 42-74, DOI: 10.1080/17513758.2016.1229817.