Data processing automation for bulk water supply monitoring

dc.contributor.authorDe Coning, Arno
dc.contributor.authorMouton, Francois
dc.date.accessioned2021-06-11T05:58:47Z
dc.date.available2021-06-11T05:58:47Z
dc.date.issued2020-11
dc.description.abstractWater as a resource is becoming more scarce with South Africa having several provinces being struck with droughts. Up to 30% of water is lost through leaks in water distribution networks. It is common practice to monitor water usage in large water distribution networks. These monitoring systems unfortunately lack the ability to alert on high flow rates and detect water leaks unless the data is reviewed manually. The paper will explore statistical and Artificial Intelligence approaches to test the viability to detect leaks. This will can then be used as an alerting team to improve operational efficiencies of small teams and reduce repair time of leaks and thus reduces water lost through leaks.en_ZA
dc.description.departmentElectrical, Electronic and Computer Engineeringen_ZA
dc.description.librarianhj2021en_ZA
dc.description.urihttps://link.springer.com/bookseries/6102en_ZA
dc.identifier.citationDe Coning A., Mouton F. (2020) Data Processing Automation for Bulk Water Supply Monitoring. In: Kreps D., Komukai T., Gopal T.V., Ishii K. (eds) Human-Centric Computing in a Data-Driven Society. HCC 2020. IFIP Advances in Information and Communication Technology, vol 590. Springer, Cham. https://doi.org/10.1007/978-3-030-62803-1_16.en_ZA
dc.identifier.issn1868-4238 (print)
dc.identifier.issn1868-422X (online)
dc.identifier.issn978-3-030-62802-4 (print)
dc.identifier.issn978-3-030-62803-1 (online)
dc.identifier.other10.1007/978-3-030-62803-1_16
dc.identifier.urihttp://hdl.handle.net/2263/80277
dc.language.isoenen_ZA
dc.publisherSpringeren_ZA
dc.rights© IFIP International Federation for Information Processing 2020. All Rights Reserved. The original publication is available at : https://link.springer.com/bookseries/6102.en_ZA
dc.subjectArtificial intelligence (AI)en_ZA
dc.subjectAutomationen_ZA
dc.subjectBig dataen_ZA
dc.subjectCritical infrastructureen_ZA
dc.subjectData optimizationen_ZA
dc.subjectLeak detectionen_ZA
dc.subjectWater managementen_ZA
dc.titleData processing automation for bulk water supply monitoringen_ZA
dc.typePostprint Articleen_ZA

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DeConing_Data_2020.pdf
Size:
300.32 KB
Format:
Adobe Portable Document Format
Description:
Postprint Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: