Shortages and machine-learning forecasting of oil returns volatility : 1900–2024

dc.contributor.authorPolat, Onur
dc.contributor.authorSomani, Dhanashree
dc.contributor.authorGupta, Rangan
dc.contributor.authorKarmakar, Sayar
dc.date.accessioned2025-06-19T10:02:20Z
dc.date.available2025-06-19T10:02:20Z
dc.date.issued2025-06
dc.descriptionDATA AVAILABILITY : Data will be made available on request.
dc.description.abstractThe objective of this paper is to forecast the volatility of the West Texas Intermediate (WTI) oil returns over the monthly period of January 1900 to June 2024 by utilizing the information content of newspapers articles-based indexes shortages for the United States (US). We measure volatility as the inter-quantile range by fitting a Bayesian time-varying parameter quantile regression (TVP-QR) on oil returns. The TVP-QR is also used to estimate skewness, kurtosis, lower- and upper-tail risks, and we control for them in our forecasting model along with leverage. Based on the Lasso estimator to control for overparameterization, we find that the model with moments outperform the benchmark autoregressive model involving 12 lags of volatility. More importantly, the performance of the moments-based model improves further when we incorporate the aggregate metric of shortages and its sub-indexes, particularly those related to the industry and labor sectors. These findings carry significant implications for investors.
dc.description.departmentEconomics
dc.description.librarianhj2025
dc.description.sdgSDG-08: Decent work and economic growth
dc.description.urihttps://www.elsevier.com/locate/frl
dc.identifier.citationPolat, O., Somani, D., Gupta, R. & Karmakar, S. Shortages and machine-learning forecasting of oil returns volatility : 1900–2024', Finance Research Letters, vol. 79, art. 107334, pp. 1-7, doi : 10.1016/j.frl.2025.107334.
dc.identifier.issn1544-6123 (print)
dc.identifier.issn1544-6131 (online)
dc.identifier.other10.1016/j.frl.2025.107334
dc.identifier.urihttp://hdl.handle.net/2263/102887
dc.language.isoen
dc.publisherElsevier
dc.rights© 2025 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
dc.subjectOil market volatility
dc.subjectShortages
dc.subjectBayesian time-varying parameter quantile regressions
dc.subjectLasso estimator
dc.subjectForecasting
dc.titleShortages and machine-learning forecasting of oil returns volatility : 1900–2024
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Polat_Shortages_2025.pdf
Size:
680.1 KB
Format:
Adobe Portable Document Format
Description:
Article
Loading...
Thumbnail Image
Name:
Polat_ShortagesAppen_2025.pdf
Size:
169.34 KB
Format:
Adobe Portable Document Format
Description:
Appendix

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: