Forecasting using a nonlinear DSGE model

dc.contributor.authorIvashchenko, Sergey
dc.contributor.authorGupta, Rangan
dc.contributor.emailrangan.gupta@up.ac.zaen_ZA
dc.date.accessioned2019-05-28T13:34:08Z
dc.date.available2019-05-28T13:34:08Z
dc.date.issued2018
dc.description.abstractA medium-scale nonlinear dynamic stochastic general equilibrium (DSGE) model was estimated (54 variables, 29 state variables, 7 observed variables). The model includes an observed variable for stock market returns. The root-mean square error (RMSE) of the in-sample and out-of-sample forecasts was calculated. The nonlinear DSGE model with measurement errors outperforms AR (1), VAR (1) and the linearised DSGE in terms of the quality of the out-of-sample forecasts. The nonlinear DSGE model without measurement errors is of a quality equal to that of the linearised DSGE model.en_ZA
dc.description.departmentEconomicsen_ZA
dc.description.librarianam2019en_ZA
dc.description.urihttps://content.sciendo.com/view/journals/jcbtp/jcbtp-overview.xmlen_ZA
dc.identifier.citationIvashchenko, S. & Gupta, R. 2018, 'Forecasting using a nonlinear DSGE model', Journal of Central Banking Theory and Practice, vol. 7, no. 2, pp. 73-98.en_ZA
dc.identifier.issn2336-9205 (online)
dc.identifier.other10.2478/jcbtp-2018-0013
dc.identifier.urihttp://hdl.handle.net/2263/69223
dc.language.isoenen_ZA
dc.publisherSciendoen_ZA
dc.rights© 2017 Sergey Ivashchenko et al., published by De Gruyter Open.en_ZA
dc.subjectNonlinear DSGEen_ZA
dc.subjectQuadratic Kalman filteren_ZA
dc.subjectOut-of-sample forecastsen_ZA
dc.subjectDynamic stochastic general equilibrium (DSGE)en_ZA
dc.subjectRoot-mean square error (RMSE)en_ZA
dc.titleForecasting using a nonlinear DSGE modelen_ZA
dc.typeArticleen_ZA

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ivashchenko_Forecasting_2018.pdf
Size:
3.23 MB
Format:
Adobe Portable Document Format
Description:
Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: