A multi-objective optimization approach for disaggregating employment data

dc.contributor.authorLudick, Chantel Judith
dc.contributor.authorVan Heerden, Quintin
dc.date.accessioned2023-04-05T11:19:36Z
dc.date.available2023-04-05T11:19:36Z
dc.date.issued2023
dc.description.abstractIn many countries, including South Africa, data on employment is rarely available on a downscaled level, such as building level, and is only available on less detailed levels, such as municipal level. The aim of this research was to develop a methodology to disaggregate the employment data that is available at an aggregate level to a disaggregate, detailed building level. To achieve this, the methodology consisted of two parts. First, a method was established that could be used to prepare a base data set to be used for disaggregating the employment data. Second, a multiobjective optimization approach was used to allocate the number of employment opportunities within a municipality to building level. The algorithm was developed using an Evolutionary Algorithm framework and applied to a case study in a metropolitan municipality in South Africa. The results showed favorable use of multiobjective optimization to disaggregate employment data to building level. By enhancing the detail of employment data, planners, policy makers, modelers and other users of such data can benefit from understanding employment patterns at a much more detailed level and making improved decisions based on disaggregated data and models.en_US
dc.description.departmentGeography, Geoinformatics and Meteorologyen_US
dc.description.librarianhj2023en_US
dc.description.urihttps://onlinelibrary.wiley.com/journal/15384632en_US
dc.identifier.citationLudick, C. & Van Heerden, Q. 2023, 'A multi-objective optimization approach for disaggregating employment data', Geographical Analysis, doi : 10.1111/gean.12328. NYP.en_US
dc.identifier.issn0016-7363 (print)
dc.identifier.issn1538-4632 (online)
dc.identifier.other10.1111/gean.12328
dc.identifier.urihttp://hdl.handle.net/2263/90376
dc.language.isoenen_US
dc.publisherWileyen_US
dc.rights© 2022 The Authors. Geographical Analysis published by Wiley Periodicals LLC on behalf of The Ohio State University. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License.en_US
dc.subjectEmployment dataen_US
dc.subjectMulti-objective optimization approachen_US
dc.subjectDisaggregated data and modelsen_US
dc.titleA multi-objective optimization approach for disaggregating employment dataen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ludick_MultiObjective_2023.pdf
Size:
7.51 MB
Format:
Adobe Portable Document Format
Description:
Online First Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: