A pointwise Lipschitz selection theorem

dc.contributor.authorMesserschmidt, Miek
dc.date.accessioned2019-05-28T11:57:20Z
dc.date.issued2019-03
dc.description.abstractWe prove that any correspondence (multi-function) mapping a metric space into a Banach space that satisfies a certain pointwise Lipschitz condition, always has a continuous selection that is pointwise Lipschitz on a dense set of its domain. We apply our selection theorem to demonstrate a slight improvement to a well-known version of the classical Bartle-Graves Theorem: Any continuous linear surjection between infinite dimensional Banach spaces has a positively homogeneous continuous right inverse that is pointwise Lipschitz on a dense meager set of its domain. An example devised by Aharoni and Lindenstrauss shows that our pointwise Lipschitz selection theorem is in some sense optimal: It is impossible to improve our pointwise Lipschitz selection theorem to one that yields a selection that is pointwise Lipschitz on the whole of its domain in general.en_ZA
dc.description.departmentMathematics and Applied Mathematicsen_ZA
dc.description.embargo2020-03-01
dc.description.librarianhj2019en_ZA
dc.description.sponsorshipThe Claude Leon Foundationen_ZA
dc.description.urihttps://link.springer.com/journal/11228en_ZA
dc.identifier.citationMesserschmidt, M. A Pointwise Lipschitz Selection Theorem. Set-Valued and Variational Analysis (2019) 27: 223-240. https://doi.org/10.1007/s11228-017-0455-2.en_ZA
dc.identifier.issn1877-0533 (print)
dc.identifier.issn1877-0541 (online)
dc.identifier.other10.1007/s11228-017-0455-2
dc.identifier.urihttp://hdl.handle.net/2263/69220
dc.language.isoenen_ZA
dc.publisherSpringeren_ZA
dc.rights© Springer Science+Business Media B.V. 2017. The original publication is available at https://link.springer.com/journal/11228.en_ZA
dc.subjectSelection theoremen_ZA
dc.subjectPointwise Lipschitz mapen_ZA
dc.subjectBartle-Graves theoremen_ZA
dc.titleA pointwise Lipschitz selection theoremen_ZA
dc.typePostprint Articleen_ZA

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Messerschmidt_Pointwise_2019.pdf
Size:
336.28 KB
Format:
Adobe Portable Document Format
Description:
Postprint Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: