International stock return predictability : is the role of U.S. time-varying?

Loading...
Thumbnail Image

Authors

Aye, Goodness Chioma
Balcilar, Mehmet
Gupta, Rangan

Journal Title

Journal ISSN

Volume Title

Publisher

Springer

Abstract

This study investigates the predictability of 11 industrialized stock returns with emphasis on the role of U.S. returns. Using monthly data spanning 1980:2 to 2014:12, we show that there exist multiple structural breaks and nonlinearities in the data. Therefore, we employ methods that are capable of accounting for these and at the same time date stamping the periods of causal relationship between the U.S. returns and those of the other countries. First we implement a subsample analysis which relies on the set of models, data set and sample range as in Rapach et al. (2013). Our results show that while the U.S. returns played a strong predictive role based on the OLS pairwise Granger causality predictive regression and news-diffusion models, it played no role based on the pooled version of the OLS model and its role based on the adaptive elastic net model is weak relative to Switzerland. Second, we implement our preferred model: a bootstrap rolling window approach using our newly updated data on stock returns for each countries, and find that U.S. stock return has significant predictive ability for all the countries at certain sub-periods. Given these results, it would be misleading to rely on results based on constant-parameter linear models that assume that the relationship between the U.S. returns and those of other industrialized countries are permanent, since the relationship is, in fact, time varying, and holds only at specific periods.

Description

Keywords

Stock returns, Predictability, Structural breaks, Nonlinearity, Time varying causality

Sustainable Development Goals

Citation

Aye, G.C., Balcilar, M. & Gupta, R. International stock return predictability : is the role of US time-varying? Empirica (2017) 44: 121-146. doi:10.1007/s10663-015-9313-3.