Determining classes of food items for health requirements and nutrition guidelines using Gaussian mixture models

Loading...
Thumbnail Image

Authors

Balakrishna, Yusentha
Manda, S.O.M. (Samuel)
Mwambi, Henry
Van Graan, Averalda

Journal Title

Journal ISSN

Volume Title

Publisher

Frontiers Media

Abstract

INTRODUCTION : The identification of classes of nutritionally similar food items is important for creating food exchange lists to meet health requirements and for informing nutrition guidelines and campaigns. Cluster analysis methods can assign food items into classes based on the similarity in their nutrient contents. Finite mixture models use probabilistic classification with the advantage of taking into account the uncertainty of class thresholds. METHODS : This paper uses univariate Gaussian mixture models to determine the probabilistic classification of food items in the South African Food Composition Database (SAFCDB) based on nutrient content. RESULTS : Classifying food items by animal protein, fatty acid, available carbohydrate, total fibre, sodium, iron, vitamin A, thiamin and riboflavin contents produced data-driven classes with differing means and estimates of variability and could be clearly ranked on a low to high nutrient contents scale. Classifying food items by their sodium content resulted in five classes with the class means ranging from 1.57 to 706.27 mg per 100 g. Four classes were identified based on available carbohydrate content with the highest carbohydrate class having a mean content of 59.15 g per 100 g. Food items clustered into two classes when examining their fatty acid content. Foods with a high iron content had a mean of 1.46 mg per 100 g and was one of three classes identified for iron. Classes containing nutrientrich food items that exhibited extreme nutrient values were also identified for several vitamins and minerals. DISCUSSION : The overlap between classes was evident and supports the use of probabilistic classification methods. Food items in each of the identified classes were comparable to allowed food lists developed for therapeutic diets. This datadriven ranking of nutritionally similar classes could be considered for diet planning for medical conditions and individuals with dietary restrictions.

Description

DATA AVAILABILITY STATEMENT : The original contributions presented in the study are included in the article/Supplementary material, further inquiries can be directed to the corresponding author.

Keywords

Food composition database, Nutrient table, Mixture model, Clustering, Classification, Nutritional content, SDG-02: Zero hunger, SDG-03: Good health and well-being

Sustainable Development Goals

SDG-02:Zero Hunger
SDG-03:Good heatlh and well-being

Citation

Balakrishna, Y., Manda, S., Mwambi, H. & Van Graan, A. (2023) Determining classes of food items for health requirements and nutrition guidelines using Gaussian mixture models. Frontiers in Nutrition 10:1186221. DOI: 10.3389/fnut.2023.1186221.