Effect of flow pattern in superstructure-based optimisation of fixed-site carrier membrane gas separation during post-combustion CO2 capture
Loading...
Date
Authors
Chiwaye, Natsayi
Majozi, Thokozani
Daramola, Michael Olawale
Journal Title
Journal ISSN
Volume Title
Publisher
Italian Association of Chemical Engineering
Abstract
Membrane-based gas separation continues to be an area of interest that is being explored for various
applications and efforts are being made to enable large-scale implementation and commercialisation. Works on
techno-economic studies in areas such as carbon capture, natural gas sweetening, and biogas upgrading has
been reported. Various simulation studies have reported the effect of the membrane flow pattern on permeate
recovery and purity. The simulation studies in this area have been limited to single-stage and two-stage
membrane processes, while many of these studies considered polymer membranes, facilitated transport has
barely been investigated. In addition, optimisation studies that compared different flow patterns in the membrane
module have been few. The facilitation of gas permeation decreases as pressure is increased due to carrier
saturation. However, an increased pressure increases the driving force, and a trade-off should be achieved.
The different membrane flow patterns also have inherent driving force potential. In this work, a superstructurebased
model that also embeds a fixed site carrier permeation membrane has been developed for CO2 capture
from a coal-fired power plant and three scenarios based on the different flow patterns, i.e., co-current, countercurrent
and crossflow, were analysed to determine the effect of the flow pattern in the membrane module. The
main objective of the optimisation was to minimise the cost of capture. The counter-current flow pattern resulted
in the lowest cost of capture as it resulted in the most energy-efficient process system. The co-current flowbased
optimisation results in configuration result in an 18 % increase in cost compared to the counter-current
flow pattern optimisation run due to a 29 % increase in energy consumption. The crossflow pattern optimisation
results in a 9 % increase in the annualised cost of capture compared to the counter-current flow.
Description
The authors would like to acknowledge the University of the Witwatersrand Research Office for support.
Keywords
Commercialisation, Gas separation, Membrane flow pattern, Simulation studies
Sustainable Development Goals
Citation
Chiwaye N., Majozi T., Daramola M.O., 2022, Effect of Flow Pattern in Superstructure-Based Optimisation of Fixed-
Site Carrier Membrane Gas Separation During Post-Combustion CO2 Capture, Chemical Engineering Transactions, 94, 1369-1374. DOI:10.3303/CET2294228.