Catalytic performance of calcium titanate for catalytic decomposition of waste polypropylene to carbon nanotubes in a single-stage cvd reactor
Loading...
Date
Authors
Modekwe, Helen Uchenna
Mamo, Messai Adenew
Daramola, Michael Olawale
Moothi, Kapil
Journal Title
Journal ISSN
Volume Title
Publisher
MDPI
Abstract
Calcium titanate mixed metal oxides with different contents were used as supports for
NiMo catalyst prepared by the sol–gel method. The activities of these catalysts were tested in
the catalytic decomposition of waste polypropylene (PP) for the synthesis of carbon nanotubes
(CNTs) using a single-stage chemical vapor deposition technique. The physico-chemical properties
of the catalysts and deposited carbon over the catalysts were checked by X-ray diffraction (XRD),
scanning electron microscopy (SEM), temperature-programmed reduction (TPR), N2 physisorption,
transmission electron microscopy (TEM), Raman spectroscopy, and thermogravimetric analysis
(TGA). The TEM and XRD results presented a high dispersion of the active metal species on the
surface of the support materials. The result showed that increasing the support content led to an
increased crystallite size of the catalysts and a resultant reduction in CNTs yield from 44% to 35%.
NiMo-supported CaTiO3 catalyst displayed good catalytic activity and stability toward CNTs growth.
Furthermore, the effect of calcination temperature on the morphology, yield, and quality of CNTs was
also studied, and it was observed that thermal treatment up to 700 ◦C could produce well graphitized,
high-quality, and high-yield CNTs from the waste PP.
Description
Keywords
Calcium titanate, NiMo catalyst, Catalyst support, Carbon nanotubes, Waste polypropylene, Thermogravimetric analysis (TGA), Raman spectroscopy, X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Temperature-programmed reduction (TPR), N2 physisorption
Sustainable Development Goals
Citation
Modekwe, H.U.; Mamo, M.A.; Daramola, M.O.; Moothi, K. Catalytic Performance of Calcium Titanate for Catalytic Decomposition of Waste Polypropylene to Carbon Nanotubes in a Single-Stage CVD Reactor. Catalysts 2020, 10, 1030. https://doi.org/10.3390/catal10091030