Strain measurement via the inner surface of a rolling large lug tyre

Show simple item record

dc.contributor.advisor Botha, Theunis R.
dc.contributor.coadvisor Els, P.S. (Pieter Schalk)
dc.contributor.postgraduate Pegram, Megan Savannah
dc.date.accessioned 2021-01-14T18:17:28Z
dc.date.available 2021-01-14T18:17:28Z
dc.date.created 2021-04
dc.date.issued 2020-10
dc.description Dissertation (MEng (Mechanical Engineering))--University of Pretoria, 2020. en_ZA
dc.description.abstract The complex interface between tyre and terrain is a largely studied topic in terramechanics and vehicle dynamics research. This interface, known as the contact patch, is however hidden from view and cannot easily be measured. Several studies have focused on measuring tyre strain on the inside surface of the tyre to indirectly determine tyre parameters. The inner surface is separated from the contact patch by the tyre thickness however this difference can be considered small in comparison to the bene t gained by a safe environment for measurement systems. Static studies of tyre strain have been successful however lacks the important phenomena occurring in a rolling tyre. Tyre strain measurements in dynamic tyres have been limited to discrete points and/or once per revolution, which is an insufficient sampling rate for vehicle stability controllers such as ABS. This study performs full-fi eld and point strain measurements of the inner tyre surface of a rolling agricultural tyre at low speeds. Stereo cameras mounted on a mechanically stabilised rim will record full-fi eld measurement of the contact patch kept in constant view. Digital Image Correlation techniques are used to determine full-fi eld deformation and strain from successively captured images. Point measurements, such as strain gauges, are included in the study for a comparative measurement. An agricultural tyre hosts large lugs which include large strain concentrations within the contact patch. The complex tyre structure signi ficantly influences the strain measurements, other factors such as inflation pressure, vertical load and slip angle is also studied. Since most vehicle forces are transmitted through the tyre at the tyre-terrain interface, capabilities to measure this area will be a great benefi t for tyre research and leading towards a smart tyre. en_ZA
dc.description.availability Unrestricted en_ZA
dc.description.degree MEng (Mechanical Engineering) en_ZA
dc.description.department Mechanical and Aeronautical Engineering en_ZA
dc.identifier.citation * en_ZA
dc.identifier.other A2021 en_ZA
dc.identifier.uri http://hdl.handle.net/2263/78031
dc.language.iso en en_ZA
dc.publisher University of Pretoria
dc.rights © 2019 University of Pretoria. All rights reserved. The copyright in this work vests in the University of Pretoria. No part of this work may be reproduced or transmitted in any form or by any means, without the prior written permission of the University of Pretoria.
dc.subject UCTD en_ZA
dc.subject Strain measurement en_ZA
dc.subject Contact patch en_ZA
dc.subject Agricultural tyre en_ZA
dc.subject Digital Image Correlation en_ZA
dc.subject Intelligent tyre en_ZA
dc.title Strain measurement via the inner surface of a rolling large lug tyre en_ZA
dc.type Dissertation en_ZA


Files in this item

This item appears in the following Collection(s)

Show simple item record