Influence of wireless communication transport latencies and dropped packages on vehicle stability with an offsite steering controller
Loading...
Date
Authors
Bennett, Rory
Kapp, Reyn Adriaan
Botha, Theunis R.
Els, Pieter Schalk
Journal Title
Journal ISSN
Volume Title
Publisher
Institution of Engineering and Technology
Abstract
In recent years, advanced driver assistance systems (ADASs) have been used to improve the safety of vehicles by either providing additional information to the driver or by taking over complete control. The majority of ADASs currently being utilised run entirely on the vehicle, only having access to information provided by the sensors that are onboard the vehicle itself. Part of the next step in the evolution of ADAS is to incorporate information from other offsite sensors or obtain control inputs from infrastructure which can coordinate multiple vehicles simultaneously via a wireless interface. Wireless communication is inherently delayed and prone to dropped packets. This study looks at the effect of transport latencies and dropped packets on an off-site autoregressive steering controller supplying direct steering inputs to a vehicle. A fully non-linear vehicle simulation model is used to test the effect of delaying steering inputs and dropped packets to test the stability of the controller. The study shows that at dropped packet percentages of up to 40% adequate vehicle control is maintained, while transport latencies of up to 100 ms allow for moderately accurate vehicle control.
Description
Keywords
Advanced driver assistance system (ADAS), Vehicle dynamics, Steering systems, Road vehicles, Radiocommunication, Driver information systems
Sustainable Development Goals
Citation
Bennett, R., Kapp, R., Botha, T.R. et al. 2020, 'Influence of wireless communication transport latencies and dropped packages on vehicle stability with an offsite steering controller', IET Intelligent Transport Systems, vol. 14, no. 7, pp. 783-791.