Blood ketone bodies and breath acetone analysis and their correlations in type 2 diabetes mellitus

Loading...
Thumbnail Image

Authors

Saasa, Valentine
Beukes, Mervyn
Lemmer, Yolandy
Mwakikunga, Bonex

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI

Abstract

Analysis of volatile organic compounds in the breath for disease detection and monitoring has gained momentum and clinical significance due to its rapid test results and non-invasiveness, especially for diabetes mellitus (DM). Studies have suggested that breath gases, including acetone, may be related to simultaneous blood glucose (BG) and blood ketone levels in adults with types 2 and 1 diabetes. Detecting altered concentrations of ketones in the breath, blood and urine may be crucial for the diagnosis and monitoring of diabetes mellitus. This study assesses the e cacy of a simple breath test as a non-invasive means of diabetes monitoring in adults with type 2 diabetes mellitus. Human breath samples were collected in Tedlar bags and analyzed by headspace solid-phase microextraction and gas chromatography-mass spectrometry (HS-SPME/GC-MS). The measurements were compared with capillary BG and blood ketone levels ( -hydroxybutyrate and acetoacetate) taken at the same time on a single visit to a routine hospital clinic in 30 subjects with type 2 diabetes and 28 control volunteers. Ketone bodies of diabetic subjects showed a significant increase when compared to the control subjects; however, the ketone levels were was controlled in both diabetic and non-diabetic volunteers. Worthy of note, a statistically significant relationship was found between breath acetone and blood acetoacetate (R = 0.89) and between breath acetone and -hydroxybutyrate (R = 0.82).

Description

Figure S1: Reconstructed GC-MS ion chromatograms (m/z 181) of patient breath samples without insulin injection (a), diabetic breath with insulin (b), and non-diabetic breath (c) sampled using on-fiber SPME derivatization with PFBHA. Figure S2: The measured breath acetone concentration by SPME GC/MS and versus blood glucose in diabetic patients.

Keywords

Diabetes mellitus, Ketone bodies, Human breath, Acetone, Beta-hydroxybutyrate, Acetoacetate, Gas chromatography-mass spectrometry (GC-MS)

Sustainable Development Goals

Citation

Saasa, V., Beukes, M., Lemmer, Y. et al. 2019, 'Blood ketone bodies and breath acetone analysis and their correlations in type 2 diabetes mellitus', Diagnostics, vol. 9, art. 224, pp. 1-10.