Stratifying antimalarial compounds with similar mode of action using machine learning on chemo-transcriptomic profiles

Show simple item record

dc.contributor.advisor Birkholtz, Lyn-Marie
dc.contributor.coadvisor Van Wyk, Rudi
dc.contributor.postgraduate Van Heerden, Ashleigh
dc.date.accessioned 2020-03-30T08:46:55Z
dc.date.available 2020-03-30T08:46:55Z
dc.date.created 2020
dc.date.issued 2019
dc.description Dissertation (MSc)--University of Pretoria, 2019. en_ZA
dc.description.abstract Malaria is a terrible disease caused by a protozoan parasite within the Plasmodium genus, claiming the lives of hundreds of thousands of people yearly, the majority of whom are children under the age of five. Of the five species of Plasmodium causing malaria in humans, P. falciparum is responsible for most of the death toll. An increase in malaria cases was detected between the years 2016 to 2017 according to the World Malaria Report of 2017, despite control efforts. The rapid development of resistance within P. falciparum against antimalarials has led to the use of artemisinin combinational therapy as the current gold standard for malaria treatment. Yet decreased parasite clearance demonstrates that using combination therapy is insufficient in maintaining current antimalarials’ effectiveness against these resistant parasites. Hence, novel compounds with a mode of action (MoA) different than current antimalarials are required. Though phenotypic screening has delivered thousands of promising hit compounds, hit-to-lead optimisation is still one of the rate-limiting steps in pre-clinical antimalarial drug development. While knowing the exact target or MoA is not required to progress a compound in a medicinal chemistry program, identifying the MoA early can accelerate hit prioritization, hit-to-lead optimisation and preclinical combination studies in malaria research. In this study, we assessed machine learning (ML) approaches for their ability to stratify antimalarials based on transcriptional responses associated with the treatments. From our results, we conclude that it is possible to identify biomarkers from the transcriptional responses that define the MoA of compounds. Moreover, only a limited set of 50 genes was required to build a ML model that can stratify compounds with similar MoA with a classification accuracy of 76.6 ± 6.4%. These biomarkers will help stratify new compounds with similar MoA to those already defined with our strategy. Additionally, the biomarkers can also be used to monitor if the MoA of a compound has changed during hit-to-lead optimisation. This work will contribute to accelerating antimalarial drug discovery during the hit-to-lead optimisation phase and help the identification of compounds with novel MoA. en_ZA
dc.description.availability Unrestricted en_ZA
dc.description.degree MSc en_ZA
dc.description.department Biochemistry en_ZA
dc.identifier.citation Van Heerden, A 2019, Stratifying antimalarial compounds with similar mode of action using machine learning on chemo-transcriptomic profiles, MSc Dissertation, University of Pretoria, Pretoria, viewed yymmdd <http://hdl.handle.net/2263/73859> en_ZA
dc.identifier.other S2020 en_ZA
dc.identifier.uri http://hdl.handle.net/2263/73859
dc.language.iso en en_ZA
dc.publisher University of Pretoria
dc.rights © 2019 University of Pretoria. All rights reserved. The copyright in this work vests in the University of Pretoria. No part of this work may be reproduced or transmitted in any form or by any means, without the prior written permission of the University of Pretoria.
dc.subject UCTD en_ZA
dc.subject Machine learning en_ZA
dc.subject Plasmodium falciparum en_ZA
dc.title Stratifying antimalarial compounds with similar mode of action using machine learning on chemo-transcriptomic profiles en_ZA
dc.type Dissertation en_ZA


Files in this item

This item appears in the following Collection(s)

Show simple item record