Development of a thiol-capped core/shell quantum dot sensor for acetaminophen
Loading...
Date
Authors
Montaseri, Hanieh
Adegoke, Oluwasesan
Forbes, Patricia B.C.
Journal Title
Journal ISSN
Volume Title
Publisher
South African Chemical Institute
Abstract
Acetaminophen (AC) is a frequently used pharmaceutical which has been detected in water systems and is of concern due to its
potential environmental impacts. In this study, three quantum dot (QD)-ligand systems, namely L-cysteine (L-cys)-, N-acetyl-
L-cysteine (NAC)- and glutathione (GSH)-capped CdSe/ZnS quantum dots, were synthesized and tested for the fluorescence
detection of acetaminophen. Among the synthesized aqueous core/shell quantum dots, L-cys-CdSe/ZnS QDs were found to be
optimal with high sensitivity for the fluorescence detection of acetaminophen. The L-cys-CdSe/ZnS QDs were of a zinc blende
crystal structure and displayed excellent fluorescence intensity and photostability and provided a photoluminescence quantum
yield of 77 % . The fluorescence of L-cys-CdSe/ZnS QDs was enhanced by the introduction of AC enabling the development of a
fast and simple method for the detection of AC. Under optimal conditions, F-F0 was linearly proportional to the concentration of
AC from 3.0–100 nmol L–1 with limits of detection and quantification of 1.6 and 5.3 nmol L–1, respectively. Some related pharmaceutical
compounds including epinephrine hydrochloride (EP), L-ascorbic acid (AA), uric acid (UA), dopamine hydrochloride
(DA) and 4-aminophenol (4-AP) did not interfere with the sensing ofAC. The probe was also successfully applied in the determination
of AC in tap and river water matrices.
Description
Keywords
Pharmaceuticals, Quantum dots (QDs), Fluorescence spectroscopy, Acetaminophen (AC), Förster resonance energy transfer (FRET)
Sustainable Development Goals
Citation
Montaseri, H., Adegoke, O. & Forbes, P.B.C. 2019, 'Development of a thiol-capped core/shell quantum dot sensor for acetaminophen', South African Journal of Chemistry, vol. 72, pp. 108-117.