Epimorphisms, definability and cardinalities

Loading...
Thumbnail Image

Authors

Moraschini, Tommaso
Raftery, James G.
Wannenburg, Johann Joubert

Journal Title

Journal ISSN

Volume Title

Publisher

Springer

Abstract

We characterize, in syntactic terms, the ranges of epimorphisms in an arbitrary class of similar first-order structures (as opposed to an elementary class). This allows us to strengthen a result of Bacsich, as follows: in any prevariety having at most s non-logical symbols and an axiomatization requiring at most m variables, if the epimorphisms into structures with at most m+s+ℵ0 elements are surjective, then so are all of the epimorphisms. Using these facts, we formulate and prove manageable ‘bridge theorems’, matching the surjectivity of all epimorphisms in the algebraic counterpart of a logic ⊢ with suitable infinitary definability properties of ⊢, while not making the standard but awkward assumption that ⊢ comes furnished with a proper class of variables.

Description

Keywords

Quasivariety, Prevariety, Equivalential logic, Epimorphism, Beth definability, Algebraizable logic

Sustainable Development Goals

Citation

Moraschini, T., Raftery, J.G. & Wannenburg, J.J. Epimorphisms, Definability and Cardinalities. Studia Logica 108, 255–275 (2020). https://doi.org/10.1007/s11225-019-09846-5.