Abstract:
Pheromonal control by the honey bee queen is achieved through the use of secretions from diverse glandular sources, but the use of pheromones from a variety of glandular sources by reproductively dominant workers, has not previously been explored. Using the social parasite, Apis mellifera capensis clonal worker we studied the diversity of glandular sources used for pheromonal control of reproductively subordinate A. m. scutellata workers. To determine whether pheromones from different glandular sources are used by reproductively active workers to achieve dominance and evaluate the degree of pheromonal competition between workers of the two sub-species, we housed groups of workers of the two sub-species together in cages and analysed mandibular and tergal gland secretions as well as, ovarian activation status of each worker after 21 days. The results showed that A. m. capensis invasive clones used both mandibular and tergal gland secretions to achieve reproductive dominance and suppress ovarian activation in their A. m. scutellata host workers. The reproductively dominant workers (false queens) produced more queen-like pheromones and inhibited ovarian activation in subordinate A. m. scutellata workers. These results show that tergal gland pheromones working in synergy with pheromones from other glands allow individual workers (false queens) to establish reproductive dominance within these social groups and to act in a manner similar to that of queens. Thus suggesting that, the evolution of reproductively dominant individuals (queens or false queens) and subordinate individuals (workers) in social insects like the honey bee is the result of a complex interplay of pheromonal signals from different exocrine glands.