Abstract:
This paper presents an extension of the state of the art theoretical model utilized for understanding the stability criteria of the particles in particle swarm optimization algorithms. Conditions for order-1 and order-2 stability are derived by modeling, in the simplest case, the expected value and variance of a particle’s personal and neighborhood best positions as convergent sequences of random variables. Furthermore, the condition that the expected value and variance of a particle’s personal and neighborhood best positions are convergent sequences is shown to be a necessary condition for order-1 and order-2 stability. The theoretical analysis presented is applicable to a large class of particle swarm optimization variants.