Toward deformation densities for intramolecular interactions without radical reference states using the fragment, atom, localized, delocalized, and interatomic (FALDI) charge density decomposition scheme

Loading...
Thumbnail Image

Authors

De Lange, Jurgens Hendrik
Cukrowski, Ignacy

Journal Title

Journal ISSN

Volume Title

Publisher

Wiley

Abstract

A novel approach for calculating deformation densities is presented, which enables to calculate the deformation density resulting from a change between two chemical states, typically conformers, without the need for radical fragments. The Fragment, Atom, Localized, Delocalized, and Interatomic (FALDI) charge density decomposition scheme is introduced, which is applicable to static electron densities (FALDI-ED), conformational deformation densities (FALDI-DD) as well as orthodox fragment-based deformation densities. The formation of an intramolecular NH⋅⋅⋅N interaction in protonated ethylene diamine is used as a case study where the FALDI-based conformational deformation densities (with atomic or fragment resolution) are compared with an orthodox EDA-based approach. Atomic and fragment deformation densities revealed in real-space details that (i) pointed at the origin of density changes associated with the intramolecular H-bond formation and (ii) fully support the IUPAC H-bond representation. The FALDI scheme is equally applicable to intra- and intermolecular interactions.

Description

Keywords

Deformation density, Fragment, atom, localized, delocalized, and interatomic (FALDI), FALDI charge density decomposition scheme, Domain averaged Fermi hole (DAFH), Intramolecular interactions, Computational chemistry

Sustainable Development Goals

Citation

De Lange, J.H. & Cukrowski, I. 2017, 'Toward deformation densities for intramolecular interactions without radical reference states using the fragment, atom, localized, delocalized, and interatomic (FALDI) charge density decomposition scheme', Journal of Computational Chemistry, vol. 38, no. 13, pp. 981-997.