Toward deformation densities for intramolecular interactions without radical reference states using the fragment, atom, localized, delocalized, and interatomic (FALDI) charge density decomposition scheme
Loading...
Date
Authors
De Lange, Jurgens Hendrik
Cukrowski, Ignacy
Journal Title
Journal ISSN
Volume Title
Publisher
Wiley
Abstract
A novel approach for calculating deformation densities is presented, which enables to calculate the deformation density resulting from a change between two chemical states, typically conformers, without the need for radical fragments. The Fragment, Atom, Localized, Delocalized, and Interatomic (FALDI) charge density decomposition scheme is introduced, which is applicable to static electron densities (FALDI-ED), conformational deformation densities (FALDI-DD) as well as orthodox fragment-based deformation densities. The formation of an intramolecular NH⋅⋅⋅N interaction in protonated ethylene diamine is used as a case study where the FALDI-based conformational deformation densities (with atomic or fragment resolution) are compared with an orthodox EDA-based approach. Atomic and fragment deformation densities revealed in real-space details that (i) pointed at the origin of density changes associated with the intramolecular H-bond formation and (ii) fully support the IUPAC H-bond representation. The FALDI scheme is equally applicable to intra- and intermolecular interactions.
Description
Keywords
Deformation density, Fragment, atom, localized, delocalized, and interatomic (FALDI), FALDI charge density decomposition scheme, Domain averaged Fermi hole (DAFH), Intramolecular interactions, Computational chemistry
Sustainable Development Goals
Citation
De Lange, J.H. & Cukrowski, I. 2017, 'Toward deformation densities for intramolecular interactions without radical reference states using the fragment, atom, localized, delocalized, and interatomic (FALDI) charge density decomposition scheme', Journal of Computational Chemistry, vol. 38, no. 13, pp. 981-997.