Abstract:
Biometric systems are used for the verification and identification of individuals using their physiological or behavioral features. These features can be categorized into unimodal and multimodal systems, in which the former have several deficiencies that reduce the accuracy of the system, such as noisy data, inter-class similarity, intra-class variation, spoofing, and non-universality. However, multimodal biometric sensing and processing systems, which make use of the detection and processing of two or more behavioral or physiological traits, have proved to improve the success rate of identification and verification significantly. This paper provides a detailed survey of the various unimodal and multimodal biometric sensing types providing their strengths and weaknesses. It discusses the stages involved in the biometric system recognition process and further discusses multimodal systems in terms of their architecture, mode of operation, and algorithms used to develop the systems. It also touches on levels and methods of fusion involved in biometric systems and gives researchers in this area a better understanding of multimodal biometric sensing and processing systems and research trends in this area. It furthermore gives room for research on how to find solutions to issues on various unimodal biometric systems.