Quantitative risk assessment for African horse sickness in live horses exported from South Africa

Loading...
Thumbnail Image

Authors

Sergeant, Evan S.
Grewar, John Duncan
Weyer, Camilla Theresa
Guthrie, Alan John

Journal Title

Journal ISSN

Volume Title

Publisher

Public Library of Science

Abstract

African horse sickness (AHS) is a severe, often fatal, arbovirus infection of horses, transmitted by Culicoides spp. midges. AHS occurs in most of sub-Saharan Africa and is a significant impediment to export of live horses from infected countries, such as South Africa. A stochastic risk model was developed to estimate the probability of exporting an undetected AHS-infected horse through a vector protected pre-export quarantine facility, in accordance with OIE recommendations for trade from an infected country. The model also allows for additional risk management measures, including multiple PCR tests prior to and during preexport quarantine and optionally during post-arrival quarantine, as well as for comparison of risk associated with exports from a demonstrated low-risk area for AHS and an area where AHS is endemic. If 1 million horses were exported from the low-risk area with no post-arrival quarantine we estimate the median number of infected horses to be 5.4 (95% prediction interval 0.5 to 41). This equates to an annual probability of 0.0016 (95% PI: 0.00015 to 0.012) assuming 300 horses exported per year. An additional PCR test while in vector-protected post-arrival quarantine reduced these probabilities by approximately 12-fold. Probabilities for horses exported from an area where AHS is endemic were approximately 15 to 17 times higher than for horses exported from the low-risk area under comparable scenarios. The probability of undetected AHS infection in horses exported from an infected country can be minimised by appropriate risk management measures. The final choice of risk management measures depends on the level of risk acceptable to the importing country. Introduction

Description

S1 Dataset. Simulation results for base scenarios.
S2 Dataset. Simulation results for comparison of high and low PCR sensitivity.
S3 Dataset. Simulation results for sensitivity analysis on breakdown of vector protection during quarantine.
S4 Dataset. Simulation results for sensitivity analysis on breakdown of vector protection during loading.
S1 Fig. Map of AHS Controlled Area of South Africa.
S2 Fig. Results of sensitivity analysis on the probability of breakdown of vector protection during pre-export quarantine. A, Low-risk area, Breakdown = gamma(24, 2191); B, Low-risk area, Breakdown = gamma(1, 5000); C, Low-risk area, Breakdown = gamma(1, 500); D, Lowrisk area, Breakdown = gamma(1, 50); E, Low-risk area, Breakdown = gamma(1, 10); F, Low-risk area, Breakdown = gamma(1, 5); G, Endemic area, Breakdown = gamma(24, 2191); H, Endemic area, Breakdown = gamma(1, 5000); I, Endemic area, Breakdown = gamma(1, 500); J, Endemic area, Breakdown = gamma(1, 50); K, Endemic area, Breakdown = gamma(1, 10); L, Endemic area, Breakdown = gamma(1, 5).
S3 Fig. Results of sensitivity analysis on the probability of breakdown of vector protection during loading. A, Low-risk area, LoadingBreakdown = gamma(1, 500); B, Low-risk area, LoadingBreakdown = gamma(1, 50); C, Low-risk area, LoadingBreakdown = gamma(1, 10); D, Low-risk area, LoadingBreakdown = gamma(1, 5); E, Endemic area, LoadingBreakdown = gamma(1, 500); F, Endemic area, LoadingBreakdown = gamma(1, 50); G, Endemic area, LoadingBreakdown = gamma(1, 10); H, Endemic area, LoadingBreakdown = gamma(1, 5).

Keywords

Risk management measures, Infections, Sub-Saharan Africa, African horse sickness, AHS

Sustainable Development Goals

Citation

Sergeant ES, Grewar JD, Weyer CT, Guthrie AJ (2016) Quantitative Risk Assessment for African Horse Sickness in Live Horses Exported from South Africa. PLoS ONE 11(3): e0151757. DOI: 10.1371/journal.pone.0151757.