The out-of-sample forecasting performance of nonlinear models of regional housing prices in the US

Loading...
Thumbnail Image

Authors

Balcilar, Mehmet
Gupta, Rangan
Miller, Stephen M.

Journal Title

Journal ISSN

Volume Title

Publisher

Routledge

Abstract

This article provides out-of-sample forecasts of linear and nonlinear models of US and four Census subregions’ housing prices. The forecasts include the traditional point forecasts, but also include interval and density forecasts, of the housing price distributions. The nonlinear smooth-transition autoregressive model outperforms the linear autoregressive model in point forecasts at longer horizons, but the linear autoregressive and nonlinear smooth-transition autoregressive models perform equally at short horizons. In addition, we generally do not find major differences in performance for the interval and density forecasts between the linear and nonlinear models. Finally, in a dynamic 25-step ex-ante and interval forecasting design, we, once again, do not find major differences between the linear and nonlinear models. In sum, we conclude that when forecasting regional housing prices in the United States, generally the additional costs associated with nonlinear forecasts outweigh the benefits for forecasts only a few months into the future.

Description

Keywords

Forecasting, Linear and nonlinear models, US and Census housing price indexes

Sustainable Development Goals

Citation

Mehmet Balcilar, Rangan Gupta & Stephen M. Miller (2015) The out-of-sample forecasting performance of nonlinear models of regional housing prices in the US, Applied Economics, 47:22, 2259-2277, DOI: 10.1080/00036846.2015.1005814.