Patterns of trophic niche divergence between invasive and native fishes in wild communities are predictable from mesocosm studies

Show simple item record Tran, Thi Nhat Quyen Jackson, Michelle C. Sheath, Danny Verreycken, Hugo Britton, J. Robert 2015-12-08T10:31:32Z 2015-12-08T10:31:32Z 2015-07
dc.description.abstract 1. Ecological theory attempts to predict how impacts for native species arise from biological invasions. A fundamental question centres on the feeding interactions of invasive and native species: whether invasion will result in increased interspecific competition, which would result in negative consequences for the competing species, or trophic niche divergence, which would facilitate the invader’s integration into the community and their coexistence with native species. 2. Here, the feeding interactions of a highly invasive fish, topmouth gudgeon Pseudorasbora parva, with three native and functionally similar fishes were studied to determine whether patterns of either niche overlap or divergence detected in mesocosm experiments were apparent between the species at larger spatial scales. Using stable isotope analysis, their feeding relationships were assessed initially in the mesocosms (1000 L) and then in small ponds (<400 m2) and large ponds (>600 m2). 3. In the mesocosms, a consistent pattern of trophic niche divergence was evident between the sympatric fishes, with niches shifting further apart in isotopic space than suggested in allopatry, revealing that sharing of food resources was limited. Sympatric P. parva also had a smaller niche than their allopatric populations. 4. In eight small ponds where P. parva had coexisted for several years with at least one of the fish species used in the mesocosms, strong patterns of niche differentiation were also apparent, with P. parva always at a lower trophic position than the other fishes, as also occurred in the mesocosms. Where these fishes were sympatric within more complex fish communities in the large ponds, similar patterns were also apparent, with strong evidence of trophic niche differentiation. 5. Aspects of the ecological impacts of P. parva invasion for native communities in larger ponds were consistent with those in the mesocosm experiments. Their invasion resulted in divergence in trophic niches, partly due to their reduced niche widths when in sympatry with other species, facilitating their coexistence in invaded ecosystems. Our study highlights the utility of controlled mesocosm studies for predicting the trophic relationships that can develop from introductions of non-native species into more complex ecosystems and at larger spatial scales. en_ZA
dc.description.librarian hb2015 en_ZA
dc.description.sponsorship Natural Environment Research Council (NERC research grant reference number NE/H000429/1) and the ‘RINSE’ project which is partly funded through the Interreg IVA 2 Seas Programme, which promotes cross-border cooperation between coastal regions, with the support of European Regional Development Fund (ERDF). The lead author was also sponsored by the Erasmus Mundus programme ‘TECHNO’. en_ZA
dc.description.uri en_ZA
dc.identifier.citation Tran, TNQ, Jackson, MC, Sheath, D, Verreycken, H & Britton, JR 2015, 'Patterns of trophic niche divergence between invasive and native fishes in wild communities are predictable from mesocosm studies', Journal of Animal Ecology, vol. 84, no. 4, pp. 1071-1080. en_ZA
dc.identifier.issn 0021-8790 (print)
dc.identifier.issn 1365-2656 (online)
dc.identifier.other 10.1111/1365-2656.12360
dc.language.iso en en_ZA
dc.publisher Wiley Open Access en_ZA
dc.rights © 2015 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society. This is an open access article under the terms of the Creative Commons Attribution License. en_ZA
dc.subject Freshwater ecosystems en_ZA
dc.subject Invasive species en_ZA
dc.subject Stable isotope analysis en_ZA
dc.subject Trophic niche width en_ZA
dc.subject Trophic relationships en_ZA
dc.title Patterns of trophic niche divergence between invasive and native fishes in wild communities are predictable from mesocosm studies en_ZA
dc.type Article en_ZA

Files in this item

This item appears in the following Collection(s)

Show simple item record