Heat transfer in a bank of tubes with integral wake splitters
Loading...
Date
Authors
Ibrahim, Aly Mustafa.
Batcha, Mohd Faizal Mohideen.
Raghavan, Vijay R.
Kamil, Mohammad
Journal Title
Journal ISSN
Volume Title
Publisher
International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics
Abstract
Paper presented at the 5th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, South Africa, 1-4 July, 2007.
The paper deals with the investigations on heat transfer characteristics of a circular tube as well as tube banks with integral downstream splitter plates in cross flow of air in a rectangular duct. The experiments were carried out in the Reynolds number range 5 x 103 to 105 on single plain cylinder and single cylinder of various splitter length-to-tube diameter ratios, L/D = 0.5, 1.0, 1.5 and 2.0. Further, tube banks consisting of 12 rows and 3 tubes per row in equilateral triangle arrangement with transverse pitch to diameter ratio, a = 2, were also investigated, the banks being made up of plain tubes or tubes with splitters. Heat transfer characteristics were studied for tubes with L/D = 0, 0.5 and 1.0 under constant heat flux conditions. Tube banks with L/D = 1.0 yielded the highest heat transfer rates. They were also superior to single tubes with L/D = 1.0.
The paper deals with the investigations on heat transfer characteristics of a circular tube as well as tube banks with integral downstream splitter plates in cross flow of air in a rectangular duct. The experiments were carried out in the Reynolds number range 5 x 103 to 105 on single plain cylinder and single cylinder of various splitter length-to-tube diameter ratios, L/D = 0.5, 1.0, 1.5 and 2.0. Further, tube banks consisting of 12 rows and 3 tubes per row in equilateral triangle arrangement with transverse pitch to diameter ratio, a = 2, were also investigated, the banks being made up of plain tubes or tubes with splitters. Heat transfer characteristics were studied for tubes with L/D = 0, 0.5 and 1.0 under constant heat flux conditions. Tube banks with L/D = 1.0 yielded the highest heat transfer rates. They were also superior to single tubes with L/D = 1.0.
Description
Keywords
Investigations on heat transfer characteristics, Integral downstream splitter plates, Reynolds number, Constant heat flux, Heat transfer characteristics of a circular tube, Heat transfer characteristics of tube banks
Sustainable Development Goals
Citation
Ibrahim, AM, Kamil, M, Batcha,MFM & Raghavan, VR 2007, Heat transfer in a bank of tubes with integral wake splitters, Paper presented to the 5th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, South Africa, 1-4 July 2007.