Optimum heat storage design for heat integrated multipurpose batch plants
Loading...
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics
Abstract
Paper presented at the 8th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Mauritius, 11-13 July, 2011.
Heat integration to minimise energy usage in multipurpose batch plants has been in published literature for more than two decades. In most present methods, time is fixed a priori through a known schedule, which leads to suboptimal results. The method presented in this paper treats time as a variable, thereby leading to improved results. Both direct and indirect heat integration are considered together with optimisation of heat storage size and initial temperature of heat storage medium. The resulting model exhibits MINLP structure, which implies that global optimality cannot generally be guaranteed. However, a procedure is presented that seeks to find a globally optimal solution, even for nonlinear problems. Heatlosses from the heat storage vessel due to idling are also considered. This work is an extension of MILP model of Majozi [1], which was more suited to multiproduct rather than multipurpose batch facilities. Optimising the size of the heat storage vessel as well as the initial temperature of the heat storage fluid decreased the requirement for external hot utility for an industrial case study by 33% compared to using known parameters.
Heat integration to minimise energy usage in multipurpose batch plants has been in published literature for more than two decades. In most present methods, time is fixed a priori through a known schedule, which leads to suboptimal results. The method presented in this paper treats time as a variable, thereby leading to improved results. Both direct and indirect heat integration are considered together with optimisation of heat storage size and initial temperature of heat storage medium. The resulting model exhibits MINLP structure, which implies that global optimality cannot generally be guaranteed. However, a procedure is presented that seeks to find a globally optimal solution, even for nonlinear problems. Heatlosses from the heat storage vessel due to idling are also considered. This work is an extension of MILP model of Majozi [1], which was more suited to multiproduct rather than multipurpose batch facilities. Optimising the size of the heat storage vessel as well as the initial temperature of the heat storage fluid decreased the requirement for external hot utility for an industrial case study by 33% compared to using known parameters.
Description
Keywords
Optimum heat storage design, Heat integration, Multipurpose batch plants, MINLP structures, Multiproducts
Sustainable Development Goals
Citation
Stamp, JD & Majozi, T 2011, 'Optimum heat storage design for heat integrated multipurpose batch plants', Paper presented to the 8th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Mauritius, 11-13 July, 2011.