Fast X-ray tomography for the quantification of the bubbling-, turbulent- and fast fluidization-flow regimes and void structures
Loading...
Date
Authors
Saayman, Jean
Nicol, Willie
Ruud van Ommen, J.
Mudde, Robert F.
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Abstract
Multiple fluidization regimes were studied using X-ray tomography. Geldart B sand particles were used
in a 14 cm (ID) column with a dual cyclone return system. Cross sectional solids concentration (/) was
measured and the time averaged / ð /Þ decreased with velocity and axial height except in the turbulent
regime where / remained constant. Radial profiles of / decreased to the centre, while all turbulent
regime velocities resulted in similar radial / profiles. Results confirm the bubbling-turbulent transition
velocity (Uc) determined from pressure fluctuations is a reliable quantification technique. The system
exhibited slugging behaviour at higher bubbling regime velocities with voids taking on cylindrical
shapes. Turbulent regime voids were characterised by elongated cylinders with diameters slightly less
than the bubbling regime’s slugs or fast fluidization regime’s core annulus. Distribution curves of the /
signal indicated a distinct dense phase in the bubbling and turbulent regime with a velocity independent
solid concentration. Void velocity analysis suggested that the bubble linking algorithm was unable to
detect fast rising voids at higher velocities.
Description
Keywords
Fast X-ray tomography, Void behaviour, Cross-sectional solids concentration, Fluidization flow regime characterization
Sustainable Development Goals
Citation
Saayman, J, Nicol, W, Ruud van Ommen, J ... et al 2013, 'Fast X-ray tomography for the quantification of the bubbling-, turbulent- and fast fluidization- flow regimes and void structures', Chemical Engineering Journal, vol. 234, pp. 437-447.