Effects of trends and seasonalities on robustness of the Hurst parameter estimators

Loading...
Thumbnail Image

Date

Authors

Ye, Xianming
Xia, Xiaohua
Zhang, Jiangfeng
Chen, Yangquan

Journal Title

Journal ISSN

Volume Title

Publisher

Institution of Engineering and Technology

Abstract

Long-range dependence (LRD) is discovered in time series arising from different fields, especially in network traffic and econometrics. Detecting the presence and the intensity of LRD plays a crucial role in time-series analysis and fractional system identification. The existence of LRD is usually indicated by the Hurst parameters. Up to now, many Hurst parameter estimators have been proposed in order to identify the LRD property involved in a time series. Since different estimators have different accuracy and robustness performances, in this study, 13 most popular Hurst parameter estimators are summarised and their estimation performances are investigated. LRD processes with known Hurst parameters are generated as the control data set for the robustness evaluation. In addition, three types of LRD processes are also obtained as the test signals by adding noises in terms of means, trends and seasonalities to the control data set. All 13 Hurst parameter estimators are applied to these LRD processes to estimate the existing Hurst parameters. The estimation results are documented and quantified by the standard errors. Conclusions of the accuracy and robustness performances of the estimators are drawn by comparing the estimation results.

Description

Keywords

Hurst parameters, fGn, Robustness, Long-range dependence (LRD)

Sustainable Development Goals

Citation

Ye, X, Xia, X, Zhang, J & Chen, Y 2013, 'Effects of trends and seasonalities on robustness of the Hurst parameter estimators', IET Signal Processing, vol. 6, no. 9, pp. 849-856.