Mineralogical investigation of the Nepheline syenite Franspoort, South Africa for beneficiation

Show simple item record

dc.contributor.advisor Merkle, R.K.W. (Roland Karl Willi), 1954- en
dc.contributor.postgraduate Gryffenberg, Lelanie en
dc.date.accessioned 2013-09-07T11:16:10Z
dc.date.available 2010-08-18 en
dc.date.available 2013-09-07T11:16:10Z
dc.date.created 2010-04-16 en
dc.date.issued 2010-08-18 en
dc.date.submitted 2010-08-18 en
dc.description Dissertation (MSc)--University of Pretoria, 2010. en
dc.description.abstract Mamelodi Quarries, which currently mine the Franspoort nepheline syenite, produces aggregate and crusher sand for the local building industry. The mine is located northeast of Pretoria, South Africa on the road to Cullinan. The aim of this study is to investigate the use of the Franspoort nepheline syenite as an alumina and alkali resource for the glass and ceramics industry at Mamelodi Quarries, and to evaluate the production of a concentrate of zircon and rare earth elements as economic by-products. International standards require a nepheline product with a ferric oxide content of less than 0.35 weight percent. The Franspoort nepheline syenite contains 3.37 weight percent of ferric oxide. The iron-containing minerals present are aegirine, aegirine-augite, magnetite, ilmenite and pyrite. The removal of iron-bearing minerals was attempted by high-intensity wet magnetic separation, low-intensity dry magnetic separation, spiral gravity separation, and heavy liquid separation to produce a saleable nepheline product. This product is the cleaned final concentrate, of the different separation tests, which contains the lowest iron concentration for application in the glass and ceramic industry. The mineral assemblage was determined with a petrographic study as well as X-ray diffraction and electron microprobe analyses. Material from the different separation tests was analysed with X-ray fluorescence to obtain the chemical composition and to evaluate the final iron content of the nepheline product. The dry magnetic separation method produced the best results. The nepheline product has a ferric oxide content of 0.68 weight percent compared to the starting concentration of 3.37 weight percent. The ferric oxide concentration is, however, above the accepted levels for the glass and ceramics industry. The ferric oxide content is attributed to small iron-rich mineral inclusions, which are locked in feldspar and nepheline. The final nepheline product is not suitable for the use in the glass and ceramic industry. Zircon was concentrated the best by the use of heavy liquid separation. Zircon is in most cases locked in the minerals albite, microcline, and nepheline. The rare earth elements are mostly associated with zircon and fluorite and therefore it will not be viable to produce it as a by-product. Copyright en
dc.description.availability unrestricted en
dc.description.department Geology en
dc.identifier.citation Gryffenberg, L 2010, Mineralogical investigation of the Nepheline syenite Franspoort, South Africa for beneficiation, MSc dissertation, University of Pretoria, Pretoria, viewed yymmdd < http://hdl.handle.net/2263/27360 > en
dc.identifier.other E10/422/gm en
dc.identifier.upetdurl http://upetd.up.ac.za/thesis/available/etd-08182010-124548/ en
dc.identifier.uri http://hdl.handle.net/2263/27360
dc.language.iso en
dc.publisher University of Pretoria en_ZA
dc.rights © 2010, University of Pretoria. All rights reserved. The copyright in this work vests in the University of Pretoria. No part of this work may be reproduced or transmitted in any form or by any means, without the prior written permission of the University of Pretoria. en
dc.subject Nepheline syenite franspoort en
dc.subject Crusher sand en
dc.subject Cullinan en
dc.subject South africa en
dc.subject UCTD en_US
dc.title Mineralogical investigation of the Nepheline syenite Franspoort, South Africa for beneficiation en
dc.type Dissertation en


Files in this item

This item appears in the following Collection(s)

Show simple item record