An excursion into classical nonlinear acoustics

Show simple item record

dc.contributor.author Sauer, Niko
dc.date.accessioned 2010-05-31T06:51:25Z
dc.date.available 2010-05-31T06:51:25Z
dc.date.issued 2010
dc.description.abstract This paper is concerned with the derivation of the partial differential equations that govern the propagation of sonic disturbances in an ideal gas under isentropic conditions. The result is a quasilinear hyperbolic system of first order equations and an inequality constraint. The speed of propagation is pressure dependent. It is shown how to deal with the equations and the constraint and how to calculate characteristics and solutions. It is also shown that shock discontinuities can develop which distinguishes the equations from the traditional linear wave equation. en
dc.identifier.citation N. Sauer, An excursion into classical nonlinear acoustics, Int. J. Eng. Sci. (2010), doi:10.1016/ N. Sauer, An excursion into classical nonlinear acoustics, Int. J. Eng. Sci. (2010), doi:10.1016/j.ijengsci.2010.02.006 en
dc.identifier.issn 0020-7225
dc.identifier.other 10.1016/j.ijengsci.2010.02.006
dc.identifier.uri http://hdl.handle.net/2263/14160
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.rights Elsevier en_US
dc.subject Shock discontinuity en
dc.subject Dynamic piston problem en
dc.subject.lcsh Nonlinear acoustics en
dc.subject.lcsh Differential equations, Partial en
dc.subject.lcsh Quasilinearization en
dc.subject.lcsh Differential equations, Hyperbolic en
dc.title An excursion into classical nonlinear acoustics en
dc.type Postprint Article en


Files in this item

This item appears in the following Collection(s)

Show simple item record