Analysis of numerical differentiation methods applied to time domain electromagnetic (TDEM) geophysical data in the S-layer differential transform
Loading...
Date
Authors
Combrinck, M.
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Abstract
The S-layer differential transform produces subsurface conductivity-depth images from Time Domain Electromagnetic (TDEM) data. It is a very fast method, but suffers from high noise levels due to the implementation of two consecutive numerical differentiations that are performed in the algorithm. In this paper, twelve numerical differentiation strategies are compared in order to find the most efficient differentiation scheme, specifically for TDEM data and the S-layer differential transform. The twelve strategies are made up through combinations for three differentiation methods, optional smoothing of data and optional resampling of data to equally spaced intervals. Comparisons are made on analytical, synthetic and field data.
Description
Keywords
S-layer differential transform, Time domain electromagnetic (TDEM), Optional smoothing of data, Optional resampling of data, Equally spaced intervals
Sustainable Development Goals
Citation
Combrinck, M 2009, 'Analysis of numerical differentiation methods applied to time domain electromagnetic (TDEM) geophysical data in the S-layer differential transform', Computers and Geosciences (2009), doi:10.1016/j.cageo.2008.08.016.