Adapting projection-based LiDAR semantic segmentation to natural domains

Loading...
Thumbnail Image

Authors

Massa, Kelian J.L.
Grobler, Hans

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Abstract

In this paper, an approach to the semantic segmentation of 3D LiDAR point clouds obtained from natural scenes is introduced. Using a state-of-the-art projection-based semantic segmentation model as the core segmentation network, several recent advances in projection-based 3D semantic segmentation methods are aggregated into a single model. These adaptions include: scan unfolding, soft-kNN post-processing, and multi-projection fusion. A novel Naïve Bayesian approach to multi-projection fusion which weights class probabilities based on the outputs of the base classifiers is proposed to further increase robustness. Quantitative and qualitative evaluations on several datasets, including scenes from both urban and natural environments; show that aggregating these adaptions into a single model can further improve the accuracy of state-of-the-art projection-based approaches. Finally, it is demonstrated that the novel Naïve Bayesian approach to multi-projection fusion addresses a number of the challenges inherent to natural data while also improving results on urban data.

Description

DATA AVAILABILITY : Data will be made available on request.

Keywords

Semantic analysis, Semantic segmentation, Natural data, Projection, Fusion, SDG-09: Industry, innovation and infrastructure, Light detection and ranging (LiDAR)

Sustainable Development Goals

SDG-09: Industry, innovation and infrastructure

Citation

Massa, K.J.L. & Grobler, H. 2024, 'Adapting projection-based LiDAR semantic segmentation to natural domains', Journal of Visual Communication and Image Representation, vol. 100, art. 104111, pp. 1-9. https://doi.org/10.1016/j.jvcir.2024.104111.