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Abstract: Optimizing the prediction of maize (Zea mays L.) yields in smallholder farming systems
enhances crop management and thus contributes to reducing hunger and achieving one of the
Sustainable Development Goals (SDG 2—zero hunger). This research investigated the capability of
unmanned aerial vehicle (UAV)-derived data and machine learning algorithms to estimate maize
yield and evaluate its spatiotemporal variability through the phenological cycle of the crop in
Bronkhorstspruit, South Africa, where UAV data collection took over four dates (pre-flowering,
flowering, grain filling, and maturity). The five spectral bands (red, green, blue, near-infrared, and
red-edge) of the UAV data, vegetation indices, and grey-level co-occurrence matrix textural features
were computed from the bands. Feature selection relied on the correlation between these features
and the measured maize yield to estimate maize yield at each growth period. Crop yield prediction
was then conducted using our machine learning (ML) regression models, including Random Forest,
Gradient Boosting (GradBoost), Categorical Boosting, and Extreme Gradient Boosting. The GradBoost
regression showed the best overall model accuracy with R2 ranging from 0.05 to 0.67 and root mean
square error from 1.93 to 2.9 t/ha. The yield variability across the growing season indicated that
overall higher yield values were predicted in the grain-filling and mature growth stages for both
maize fields. An analysis of variance using Welch’s test indicated statistically significant differences
in maize yields from the pre-flowering to mature growing stages of the crop (p-value < 0.01). These
findings show the utility of UAV data and advanced modelling in detecting yield variations across
space and time within smallholder farming environments. Assessing the spatiotemporal variability
of maize yields in such environments accurately and timely improves decision-making, essential for
ensuring sustainable crop production.

Keywords: yield prediction; maize; growth stages; vegetation indices; unmanned aerial vehicles;
machine learning algorithms; grey-level co-occurrence matrix (GLCM)

1. Introduction

Maize (Zea mays L.) is a crop of global significance and is especially important as a
staple food for developing countries [1,2]. Globally, the maize crop has a harvested area of
234,291,525.8 hectares over six decades, from 1961 to 2021 [3]. The annual global average of
maize yield stands at 5.8 t/ha, with developing countries producing a much lower average
yield of 2.7 t/ha [4]. Since the 1960s, maize production in sub-Saharan Africa has increased
mainly due to expanded cultivation, but smallholder farmers continue to face challenges
in improving yields amid a growing population and rise in demand for food security [5].
The variability in maize yields in sub-Saharan Africa is due to several environmental and
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anthropogenic factors such as nutrients, sunlight, soil erosion, moisture, climatic variability,
irrigation, planting techniques (e.g., strip tillage), tillage distance, and plough penetration
of soils [6–12]. Declining maize yields are observed with the occurrence of extreme climatic
events, e.g., high temperatures, droughts, and variability of climate modes, such as the El
Niño–Southern Oscillation or the Indian Ocean Dipole [13,14]. Compared to smallholder
farming, commercial farming uses optimal crop management techniques such as improved
maize genetics and precision farming practices which encourage higher crop yields [4].

Accurate and timely information on crop growth conditions is vital for the reliable
prediction of crop yields. This information assists in decision-making for crop management
and resource allocation to farmers [15]. Several studies have demonstrated that non-
intrusive data, processed through remote sensing techniques (such as satellite imagery),
can provide both timely and accurate maize yield estimates [16–19]. Satellite images such as
Sentinel-2, Landsat-8, and SPOT-4 have a lower than 5-m spatial resolution, and low revisit
frequency, and can be contaminated by atmospheric clouds and their shadows that hinder
crop modelling [20,21]. In recent years, the rapid development of unmanned aerial vehicle
(UAV) technologies has increased their use for farm-level crop yield estimations as they
allow for cost-effective data acquisition at high spatial resolutions [22–24]. The imagery
assists in easily monitoring the complex phenology and structure of maize crops [25].
Recently, a study used UAVs for maize height, yield, and biomass predictions to assess the
variability of crop development [26]. In that study, crop height estimations were employed
in the generalized additive model for the prediction of dry grain yield with an accuracy of
R2 0.90 [26].

The UAV data can produce spatial information about the crop which can be used for
crop growth, crop yield, and health monitoring [27–29]. Recent UAV-based studies have
focused on spectral, structural, and textural variables to predict phenotypic plant traits
including plant height, canopy biomass, and grain yields [30–33]. Incorporating feature
extraction techniques into UAV data can improve the study of maize crop phenology and
in turn crop yield estimation. Schut et al. [34] used two vegetation indices (VIs), including
the normalized difference vegetation index (NDVI) and the perpendicular vegetation index
(PVI) derived from UAV and satellite images, to assess the effect of fertilizers on crop yields
in smallholder fields. They reported that maize had the lowest correlation between relative
yields and the coefficient of variation for the UAV-derived PVI with R2 values as low as
0.21. These results show that using only two vegetation indices has the potential to hinder
the prediction of crop yields. Similarly, the green NDVI (GNDVI) based on UAV imagery
was found to produce a low predictor accuracy with the GNDVI (r < 0.4) when compared to
measured maize yields [35]. Therefore, a variety of UAV-derived VIs need to be identified
based on their correlation to maize yield for determining model inputs. Ramos et al. [36]
identified 33 VIs and ranked the top three best-performing VIs when generating maize
yield maps. They found that the three best VIs improved the prediction of maize yield
with the RF algorithm; however, this approach was not effective with the other machine
learning algorithms. Thus, identifying only a limited number of specific VIs for estimating
crop yield might only be beneficial for some prediction algorithms. The study by Pinto
et al. [37] reached similar conclusions, where best correlated VIs varied in effectiveness for
yield predictions and the RF algorithm outperformed the other models. This improved
accuracy of RF is most likely due to the ability of certain machine learning algorithms to
handle complex non-linear relationships within data [38].

Textural features extracted from UAV data provide information such as contrast, mean,
entropy, variance, homogeneity, dissimilarity, angular second moment, and correlation
calculated from the grey-level co-occurrence matrix (GLCM) have the potential to improve
maize crop yield estimations [39]. Yang et al. [40] effectively predicted maize yield at
different phenological stages using both vegetation indices and GLCM-derived textural
features. The results showed that UAV data produced R2 values from 0.89 to 0.93. However,
they observed that VIs were selected more frequently over the growing season than textural
features when identifying the variables for yield prediction. Although VIs provide valuable
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insights into model accuracies, the integration of multiple datasets that incorporate textural
features is imperative for maize yield predictions [41].

Many studies have combined UAV data and machine learning algorithms to predict
maize crop yield [36,39,42–44]. For example, Danilevicz et al. [42] found that the multimodel
deep learning model applied to UAV data predicted maize yield accurately at the early
stage of development with an R2 score of 0.73 and a root mean square error (RMSE) of
1.07 t/ha. In the study by Kumar et al. [43], machine learning models such as the k-
nearest neighbour, support vector regression, and deep neural network were evaluated
for maize yield prediction using UAVs. They found accuracies with R2 ranging from 0.65
to 0.84 and a RMSE from 0.69 to 1.75 Mg/ha between the three models. Fan et al. [44]
found that estimating maize yield with the UAV-mounted hyperspectral data produced
low accuracies. They found that the ridge regression produced the highest values of
the correlation coefficient (r = 0.54) and RMSE = 2.68. Bao et al. [45] also produced crop
yield predictions from UAV-derived data and confirmed (with R2 ranging from 0.860 to
0.898) that Gradient Boosting (GradBoost) outperformed traditional ordinary least squares
and stepwise multiple linear regression. However, they found that the GradBoost model
underestimated yield values, which was most likely due to small training samples and the
high complexity of the model.

The availability of UAV-derived data for estimating spatiotemporal variability of
maize yield is vital for assessing crop health. Monitoring yield over the crop development
stages reveals growth patterns and informs optimized crop management. Sibanda et al. [46]
achieved a high accuracy (R2 = 0.95 and RMSE = 0.03) yield prediction for smallholder
farmer maize using UAV data and the RF algorithm in the reproductive stages of the crop
cycle. While the latter authors reported higher accuracy during the reproductive stages,
another study in Zimbabwe found yield accuracy to be higher in the vegetative stages
of crop development. These researchers showed that UAV data (red at the vegetative,
near-infrared [NIR] at the vegetative stage, and red at the flowering stage) could accurately
predict maize yield with r = 0.86 and RMSE = 0.323 [47]. In Ren et al. [48], the combination
of UAV data from the entire growth period provided better yield predictions; however, the
accuracies improved gradually from early to mature crop development. This indicated
the importance of segregating the modelling exercise by growth stage [39–41,46–48]. Thus,
there is a need to not only study the accuracy of the predictions but also to quantify the
variation in predicted values throughout the season [39–41,46–48]. This can provide a
better evaluation of the maize yield estimates at various phenological stages of the crop
growth cycle.

The previous literature demonstrates that crop yield prediction accuracy depends sig-
nificantly on the selected input variables, such as VIs and textural features (GLCM) [34–37].
Additionally, the performance of machine learning algorithms varies for maize yield predic-
tion across the phenological cycle. Therefore, we propose an evaluation of different input
features and machine learning algorithms to predict maize yield at the various stages of
the crop cycle. The objectives of this study were as follows: (i) to identify the model input
features based on the correlation between observed yield and UAV-derived spectra, VIs,
and textural features; (ii) to evaluate the performance of machine learning algorithms for
predicting maize yield at different growth stages; (iii) to assess feature importance for each
algorithm; (iv) to create a yield map for the predicted maize estimates; and (v) to assess the
spatiotemporal variability of yield estimates through the phenological cycle.

2. Materials and Methods
2.1. Study Site

The research was undertaken during the 2021/2022 maize growing season. The study
used a medium-sized commercial farm comprising two fields, located in Bronkhorstspruit
in the Tshwane Municipality, South Africa (Figure 1a). This study site was selected owing to
the presence of smallholder farming areas such as in the nearby rural communities, thus of-
fering a valuable comparative perspective on maize crop yields given similar environments.
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As the study region is part of the highveld ecoregion, the climate is characterized by rainy
summers (from October to May) and dry winters. Figure 1b represents hourly temperature
and rainfall data from the Bronkhorstspruit weather station at 25◦42′07.5′′ S 28◦47’56.4′′ E
acquired from the Agricultural Research Council (ARC). The soil was predominantly sandy
with an average of 2.92% soil moisture, based on 100 soil samples oven-dried at 105 ◦C
taken in the study area. According to the 1:250,000 geological map published by the Council
for Geoscience [49], the site is part of the Dwyka formation with a lithological description
of tillite and shale. The two different maize varieties had been planted, namely white maize
in Field A and yellow maize in Field B (Figure 1c). Generally, the maize crop has a life
cycle that varies depending on the planting date and locality of the site. The life cycle of
the maize plant was found to extend 120 to 160 days on average [50] and had been planted
in November. The life cycle of maize consists of the vegetative and reproductive growth
stages. The vegetative stage includes the initial seedling emergence (VE), leaf growth
(V1-V14), and tasselling (VT). The reproductive stage includes silking (R1), blistering (R2),
milking (R3), dough (R4), dent (R5), and physiological maturity (R6) [51].
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Figure 1. (a) The geographic location of the Vlakfontein farm is in the Gauteng province of South
Africa. (b) Daily maximum (red) and minimum (orange) average temperatures and daily rainfall
(blue) recorded from the Bronkhorstspruit weather station for September 2021 to September 2022.
(c) The maize field boundaries and UAV red, green, and blue (RGB) images for Fields A and B are
shown on a satellite image background.
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2.2. Field Yield Measurements

A field visit was conducted over 18–21 May 2022 for the collection of in situ yield
measurements at the study site. Prior to the field visit, a systematic grid consisting of
200 sampling points was created, allocating 100 points for each field. The objective yield
survey methodology described by Bernardi et al. [52] (developed for estimating the yields
of white and yellow maize) was adopted in this study. At each designated sampling point,
a 10-m section of the row was selected for assessment. Here, ears of maize were counted
and arranged in order of ear size, from shortest to longest. The median ear was then chosen
for further analysis; it was shelled and weighed, and the moisture content was determined.
Additionally, the width of the maize row was measured across a span of six rows. Using
these data, yield estimates were calculated using a regression model that included a bias
correction factor for ensuring accurate yield estimates. Not all of the 200 sampling points
collected per month were suitable for machine learning to model data for estimating crop
yields (specifically, only 194 points were usable for January and February, respectively,
188 for April, and 199 for May of 2022). The life cycle of the maize plants broadly reached
the pre-flowering stage in January, flowering in February, grain-filling in April, and maturity
by May 2022.

2.3. Remote Sensing Imagery and Preprocessing

Images were acquired using UAVs on 26 January, 23 February, 6 April, and 18 May
2022, coinciding with the field survey and the four growing stages (pre-flowering, flowering,
grain-filling, and maturity) of the maize crop in the area. The UAV system used was the
Matrice 600 Pro product by the DJI company. Images were collected with the DLS 2 light
sensor with an integrated Global Positioning System (GPS). The commercial MicaSense
RedEdge-MX multispectral camera was used [53]. The UAV images were acquired at an
8 cm resolution with spectral bands including red (663–673 nm), green (550–570 nm), blue
(465–485 nm), red-edge (712–722 nm), and NIR (820–860 nm) bands, with a horizontal field
of view of 47.2◦. The output of the five narrow spectral band images consisted of a 12-bit raw
digital output format. The UAV flight height was set to 120 m in favourable atmospheric
conditions that guaranteed high-accuracy point cloud data and image acquisition. The raw
radiometric data were processed in a three-step process using the photogrammetry software
called Pix4Dmapper 4.8.0 version (Pix4D, Lausanne, Switzerland). This process includes
the following: (i) initial processing by correcting image orientation and georeferencing
the images based on ground control points; (ii) the computation of dense point cloud and
3D calculated mesh; and (iii) the creation of the digital surface model, orthomosaic, and
index map. Radiometric corrections for raw images were performed using Pix4Dmapper;
before the flight commences, a picture is captured to calibrate the imagery from a target
panel for radiometric correction using a reference panel with known properties, such as the
position of the sun and irradiance. The Pix4Dmapper produced geotiff image outputs for
each spectral band for this study.

2.4. An Overview of the Methodology

The overall workflow for the methodology is illustrated in Figure 2; this mainly
consisted of the following: (i) collection of UAV imagery; (ii) image preprocessing of the
spectral reflectance data; (iii) analysis of spectral data for calculating the textural features
and vegetation indices; (iv) the selection of correlated features with yield measurements;
(v) creating a model for predicting maize yield from the UAV input data; and (vi) evaluating
model accuracy and performance for predicting yield.
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2.4.1. Textural Properties

The GLCM statistical technique is widely used for extracting vital textural features
for studying crop structure and yields. It is needed to detect variations in texture that
are related to changes in crop health, density, and development. In this study, the GLCM
was implemented using the ‘glcm’ package available in R software (Version 4.3.3) [54].
Seven textural features were calculated from the red, green, and blue spectral bands:
mean, homogeneity, dissimilarity, entropy, angular second moment, variance, and contrast
(Table 1).

2.4.2. Spectral Vegetation Indices

Vegetation indices (VIs) play a pivotal role in quantifying plant health indicators, in-
cluding photosynthetic activity, chlorophyll presence, biomass, and soil properties [29,55–59].
Their application extends to evaluating key growth attributes and potential yields of the
crop. In this study, 12 VIs that are widely used in vegetation characterization were explored
(Table 1). The VIs were chosen based on their specific capability to identify distinct aspects
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of the crop in terms of sensitivity to changes in soil background; they decrease the satu-
ration effect of NDVI, they enhance the green vegetation signal, and they are sensitive to
chlorophyll content [29,55–59]. These VIs were computed using Python (3.12.4).

Table 1. Description of selected textural features and vegetation indices.

Features Formula References

(i, j)th entry in normalized
grey-tone spatial dependence matrix p(i, j) Haralick et al. [60]

The distinct number of grey levels in the image Ng
Mean of pxand py µ

Mean ∑
i

∑
j

x(i, j)p(i, j)

Homogeneity ∑
i

∑
j

1

1 + (i − j)2 p(i, j)

Dissimilarity ∑
Ng−1
n=1 n

{
∑

Ng

i=1 ∑
Ng

j=1 p(i, j)2
}
|i−j|=n

Contrast ∑
Ng−1
n=0 n2

{
∑

Ng

i=1 ∑
Ng

j=1 p(i, j)2
}
|i−j|=n

Entropy −∑
i

∑
j

p(i, j) log(p(i, j))

Angular second moment ∑
i

∑
j
{p(i, j)}2

Variance ∑
i

∑
j
(i − µ)2 p(i, j)

Leaf chlorophyll index (LCI) LCI = NIR−REdge
NIR+R Datt [61]

Excess green index (EGI/EXG) EXG = 2 × G−R−B
R+G+B Woebbecke et al. [62]

Modified simple ratio (MSR) MSR =
( NIR

R )−1√
NIR

R +1
Chen [63]

Red-edge re-normalized difference vegetation index
(RERDVI) RERDVI = NIR−REdge√

NIR+REdge
Cao et al. [64]

Plant biochemical index (PBI) PBI = NIR
G Rao et al. [65]

Red-edge ratio vegetation index (RERVI) RERVI = NIR
REdge Jasper et al. [66]

Visible atmospheric resistant index (VARI) VARI = G−R
G+R−B Gitelson et al. [67]

Triangular greenness index (TGI) TGI = − 190(R−G)−120(R−B)
2

Hunt Jr et al. [68]
Normalized difference vegetation index (NDVI) NDVI = (NIR−R)

(NIR+R)
Tucker [69]

Enhanced vegetation index (EVI) EVI = 2.5 × (NIR−R)
(NIR+6R−7.5B+1)

Huete et al. [70]

Soil-adjusted vegetation index (SAVI) SAVI = (1+0.5) × (NIR−R)
(NIR+R+0.5)

Huete [71]

Normalized difference red-edge index (NDRE) NDRE = (NIR−REdge)
(NIR+REdge)

Barnes et al. [72]

2.5. Feature Selection

In this study, the Python library ‘pandas’ was used to analyse the correlations between
the measured maize yield data and the spectral input features described in Sections 2.4.1
and 2.4.2. This is performed before regression analysis for feature selection and ensures
only the highest correlated features are included in the modelling process. The Pearson
correlation coefficient (r) was used for identifying the correlated features. Features that
correlated well with maize yield (moderate to substantial r values ranging between r > 0.5
and −0.65) were selected for each year to run regression analysis to produce prediction
models [20,73–75].

Furthermore, the recursive feature elimination with cross-validation (RFECV) was
applied to each model to select non-collinear features and avoid redundancy. This process
identifies the best subset of features that most significantly contribute to model performance.
The RFECV ensures that the least important features are removed before evaluating the
model’s performance based on cross-validation scores at each iteration. The Python library,
Scikit-learn, was used to apply RFECV with the following parameters: 10-fold cross-
validation; R2 for scoring each feature; and a minimum threshold of ten features.
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2.6. Machine Learning Algorithms

Four machine learning algorithms were selected for this study, namely RF, Extreme
Gradient Boosting (XGBoost 2.1.0), GradBoost (0.20), and Categorical Boosting (CatBoost
1.2.5). These algorithms were implemented in Python using their respective libraries. Hy-
perparameter optimisation was completed for this study to determine the best parameters
for each model. In the current study, the grid search method was chosen for the fine-tuning
and optimisation of parameters. GridSearchCV (1.5.0) is the specific method from Scikit-
learn that was used to systematically evaluate combinations of the model parameters using
the 10-fold cross-validation, thus optimising the R2 metric.

The RF regression is a supervised machine learning algorithm that is available for
the prediction of continuous data. For improved accuracy, RF creates a forest of decision
trees using a random subset of training data. Each tree consists of a prediction which is
used to create a final prediction based on the average values from all the individual tree
predictions [76]. The processing of the algorithm was coded using the Scikit-learn library
in Python [77].

The GradBoost regression algorithm is an ensemble learning technique that makes
predictive models [78]. Decision trees are created using an iterative procedure that starts
with weak learners. The aim is to create strong learners by reducing the pseudo residual
values (the difference between the observed and predicted values). Each tree is added to
minimize the loss function which is defined initially at the start of the process. Therefore,
each tree is trained to predict values that can reduce the error between observed and
predicted values. The processing of this algorithm was completed in the Scikit-learn Python
library [77].

The XGBoost regressor is a machine learning algorithm known for improving decision
trees (tree boosting) to create an ensemble learning algorithm [79]. XGBoost uses the
principles of GradBoost to create the models sequentially to reduce the residuals of each
of the decision trees. This model is further optimized by parallelized tree building. Tree
pruning is also performed in a backwards direction by calculating the difference between
the calculated gain from similarity scores and the user-defined gamma (or tree complexity)
parameter. XGBoost also incorporates regularization (L1-Lasso and L2-Ridge regression) to
balance the model’s bias and variance, which controls model complexities and prevents
overfitting. The processing of this algorithm was completed using the XGBoost library
in Python.

The CatBoost machine learning algorithm is another algorithm that uses decision trees
with categorical data and the framework of GradBoost. CatBoost uses symmetric trees
which is unique to this algorithm, which means that all the nodes are split exactly the same
at all depths. This is carried out to avoid overfitting and to reduce computing times [80].
The CatBoost Python library was used for modelling this algorithm.

2.7. Accuracy Assessment

The following statistical metrics were used to assess the model performance in this
study: (i) R2, (ii) RMSE, (iii) mean square error (MSE), and (iv) the relative RMSE (RRMSE).
Formulas (1)–(4) are given below:

R2 = 1 − ∑N
i=1(yi − ŷi)

2

∑N
i=1(yi − yi)

2 , (1)

RMSE =

√
∑N

i=0(yi − ŷi)
2

n − 1
, (2)

MSE =
∑N

i=1(yi − ŷi)
2

n
, (3)

RRMSE =
RMSE

yi
× 100%, (4)
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where, n is the sample size or number of data points, yi is the observed yield values, yi
is the mean value of all the observed yields, and the ŷi is the predicted yield value. In
addition, N is the total number of data points in the entire dataset.

Welch’s Analysis of Variance (ANOVA) was used to evaluate variations in maize yield
across growth stages for Fields A and B [81]. The sample data (100 points per field) were
randomly sampled from the predicted yield maize maps for each field. Welch’s ANOVA
was chosen because (i) the data lacked homogeneity of the variances within each field, and
(ii) the data were not normally distributed. This analysis involved four different dates, and
for each date, the F-statistic and associated p-value were calculated using the ‘scipy.stats’
Python library.

3. Results
3.1. Correlation Analysis of Maize Yield and UAV Data for Feature Selection

Feature selection was explored by identifying the correlation between maize yield and
feature variables. The Pearson correlation coefficient was used to evaluate the correlation
between maize yield and the spectral bands, GLCM-derived textural features, and VIs from
UAV-derived data. Figure 3 shows the correlation data between the 41 spectral feature
bands and maize yield over the four months. The correlation between maize yield and the
UAV spectral data for January 2022 is shown in Figure 3a. A moderate correlation coefficient
threshold of r > 0.5 was specified for feature selection to identify the top correlated bands
for this month [20,82]. Most prominently, the PBI vegetation index showed the highest
correlation with yield with r = 0.57. The LCI, NDRE, and RERVI were the second-highest
correlated features with r = 0.56.

In February 2022, a moderate correlation coefficient threshold of r > 0.5 was adopted
for feature selection, resulting in the selection of ten bands (Figure 3b) for inclusion in
model prediction. The RERDVI vegetation index had the highest correlation at r = 0.71,
followed by the RERVI (r = 0.69) and the NDRE (r = 0.68). The latter two features were
quantified using the red-edge band.

The correlation between maize yield and spectral features for April 2022 is shown
in Figure 3c. Notably, the correlation patterns in this dataset differ from the May 2022
data. In the initial phase of model training and testing for April, a substantial correlation
of r > 0.65 was established, resulting in a total of 16 bands selected for analysis. Among
these variables, the RERDVI exhibited the strongest correlation at r = 0.78, followed by
an r = 0.77 for SAVI, RERVI, and MSR vegetation indices. The correlation results for this
month favoured vegetation indices, with only one GLCM textural feature, specifically the
red angular second moment, producing a correlation coefficient of r = 0.67 and selected for
model input.

In the May 2022 dataset, the 11 features showing the highest correlation with yield
were textural (GLCM) (Figure 3d). The GLCM features, including green mean, red mean,
and red variance had the highest correlation with crop yield (r = 0.72). To diversify the
spectral feature types to be used in a further regression analysis, the correlation threshold
was relaxed by specifying it at 0.6. This specification resulted in the selection of 22 features
that also included vegetation indices (PBI, SAVI, and EVI).

3.2. Development of Maize Yield Prediction Models

To assess the predictive performance of the machine learning models and deter-
mine their accuracy in yield estimation, we trained and tested four machine learning
models: CatBoost, GradBoost, RF, and XGBoost. For optimization of the algorithm, fine-
tuning of hyperparameters was needed. For RF this included the number of decision
trees (n_estimators = 100, 200, 300), the maximum depth of each tree (max_depth = None,
5, 10), and the minimum samples required to split the node (min_sample_split = 2, 5,
10). For GradBoost, the hyperparameter tuning included n_estimators = 100, 200, 300;
max_depth = 3, 5, 7; and the learning_rate = 0.01, 0.1, 0.3. The learning_rate is a parameter
that determines the size of the contribution of each decision tree to the final prediction,
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i.e., 0.3 results in a 70% decrease in the contribution of each tree. The hyperparameter
tuning for XGBoost included n_estimators = 100, 200, 300; max_depth = 3, 5, 7; and the
learning_rate = 0.01, 0.1, 0.3. Lastly, the hyperparameter tuning for the CatBoost algorithm
consisted of n_estimators = 100, 200, 300; max_depth = 3, 5, 7; and the learning_rate = 0.01,
0.1, 0.3.
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yield, spectral feature bands, GLCM features, and VIs for the maize growth cycle: (a) pre-flowering,
(b) flowering, (c) grain filling, and (d) maturity.

Four statistical metrics were used in the evaluation of the proposed prediction models.
These models were evaluated to determine the lowest error in the yield predictions. Figure 4
shows the model results using the metrics for the four phenological stages. The R2 values for
the RF algorithm ranged from −0.32 to 0.68 (Figure 4a); thus, this model produced both the
lowest accuracy and highest R2 score. The R2 values for the GradBoost algorithms ranged
from 0.05 to 0.67. This was followed by the CatBoost algorithm where R2 values ranged
between 0.06 and 0.64. The lowest values were observed for the XGBoost algorithm, and the
values ranged from −0.1 to 0.63. The graph shows that the four algorithms performed the
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worst during the pre-flowering stage of maize growth, especially the low values observed
from the RF and XGBoost algorithms. The R2 values for the grain-filling and mature growth
stages were the highest for the RF and GradBoost algorithms, which makes it difficult to
choose one model over another.
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(a) R-squared values, (b) root mean square error (RMSE), (c) mean square error (MSE), and (d) relative
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Figure 4b shows the RMSE results for the four algorithms, with the RMSE values
for the GradBoost algorithm ranging from 1.93 to 2.9 t/ha. In comparison, the CatBoost
algorithm observed RMSE values between 2.00 and 2.89 t/ha, and the XGBoost algorithm
showed values ranging from 2.04 to 3.12 t/ha. The RMSE values for the RF algorithm
spanned from 1.90 to 3.42 t/ha.

The MSE values were the lowest for the GradBoost algorithm, as values ranged from
3.74 to 8.41 t/ha for the four time periods. The graphs showed that this was followed by
the CatBoost algorithm, which showed similar lower MSE values ranging between 4.01
and 8.33 t/ha. The higher MSE values were shown to be from the XGBoost algorithm,
with values ranging from 4.15 to 9.72 t/ha. The highest MSE values were found in the RF
algorithm results, where values ranged between 3.62 and 11.66 t/ha (Figure 4c).



Geomatics 2024, 4 224

Similar trends were seen for RMSE and MSE values on the one hand, and R2 on the
other hand. However, for the flowering growth stage, the CatBoost algorithm produced
slightly improved results compared to the three other models. The RF and GradBoost
models overall produced consistently favourable values for all three metrics (R2, RMSE,
and MSE). This is further confirmed by the 1% difference between the RRMSE values for the
flowering, grain-filling, and maturity stages, with the GradBoost producing 10% less error
than the RF based on the RRMSE for the pre-flowering stage. Based on our study, these
algorithms can be considered the most satisfactory algorithms for maize yield estimation.

Figure 5 represents the scatterplots of maize yield estimations; the scatterplots indicate
the performance of the four machine learning models by comparing the linear correlation
of prediction yield values to the observed values across the growth stages. The algorithms
produced results that were overestimated in most low-yield cases. The data points in
Figure 5a showed the most variation for all the models with values plotting significantly
above or below the trendline. The RF algorithms for the pre-flowering phase produced the
most under- and overestimated yield values. Figure 5b shows an improvement in the linear
fitting between the observed and predicted yield values. XGBoost predicted yield that
deviated significantly from the 1:1 trendline during the flowering (Figure 5b) and grain-
filling (Figure 5c) growth stages. The GradBoost, RF, and CatBoost algorithms exhibited
similar trends, with data points indicating a good linear fit as points closely aligned with
the trendline. This indicates the efficiency of the algorithms to estimate maize yield. The
highest accuracy relative to the 1:1 reference line (with data points closely clustered around)
was for the grain-filling and mature stages of crop development. This suggests the models
performed the best for maize yield estimations for these periods.
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Figure 5. The correlation between predicted and observed yield for maize for four machine learning
regression models (RF, XGBoost, GradBoost, and CatBoost) based on a dataset for model validation
(p < 0.001). Each subplot (a–d) corresponds to specific growth stages: (a) pre-flowering, (b) flowering,
(c) grain filling, and (d) maturity, with the 1:1 reference line illustrating the deviation between the
observed and predicted yield values.
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The cross-validation results for the four models are shown in Figure 6. The boxplots
show variations in the metrics R2, RMSE, and MSE for the four machine learning algo-
rithms. Based on the higher R2 values and lower RMSE and MSE values, better predictive
accuracies were generally obtained for the flowering, grain-filling, and mature growth
stages compared to pre-flowering. Table 2 shows the metrics for the models to evaluate
the performance further in terms of the training, testing, and the mean R2 cross-validation
results. In Figure 6, the CatBoost showed the model performance was the best across all
the models and periods. The majority of higher R2 values were concentrated within the
75th percentile for the pre-flowering and mature growth stages, as indicated by the median
lines. The CatBoost produced the best range of mean R2 cross-validation values ranging
from 0.42 to 0.53. This algorithm also produced low RMSE (2.46 to 2.78 t/ha) and MSE
(6.58 to 8.23 t/ha) cross-validation values. The other models did not produce significantly
lower results. The XGBoost algorithm produced cross-validation results with mean R2

cross-validation results ranging from 0.37 to 0.51. The mean RMSE ranged between 2.49 and
2.88 t/ha and the mean MSE ranged between 6.66 and 8.74 t/ha. The median values of the
XGBoost-based results were similar to the GradBoost and RF algorithms. The RF algorithm
produced a mean R2 ranging between 0.36 and 0.50. The mean RMSE ranged between
2.52 t/ha and 2.88 t/ha, and the mean MSE ranged between 6.77 t/ha and 8.81 t/ha. The
results for the GradBoost algorithm for the four time periods showed cross-validation
mean R2 values ranging from 0.36 to 0.49. This algorithm produced mean RMSE ranging
from 2.54 to 2.93 t/ha and the MSE for this algorithm ranged from 6.85 to 9.11 t/ha. In
comparison to the CatBoost, RF, and XGBoost algorithms, the GradBoost algorithm had the
highest overall error range.

Table 2. Summary of cross-validation accuracy of predicted yield models.

Model Type Life Cycle Training R2

Score Test R2 Score
Cross-

Validation
Mean R2

Cross-
Validation

Mean RMSE

Cross-
Validation
Mean MSE

CatBoost Pre-flowering 0.52 0.06 0.42 2.78 8.23
CatBoost Flowering 0.58 0.55 0.49 2.60 7.12
CatBoost Grain filling 0.69 0.56 0.49 2.48 6.55
CatBoost Maturity 0.71 0.64 0.53 2.46 6.58

GradBoost Pre-flowering 0.56 0.05 0.36 2.93 9.11
GradBoost Flowering 0.61 0.43 0.45 2.73 7.86
GradBoost Grain filling 0.69 0.54 0.41 2.69 7.76
GradBoost Maturity 0.88 0.67 0.49 2.54 6.85

RF Pre-flowering 0.79 −0.32 0.36 2.88 8.81
RF Flowering 0.82 0.47 0.42 2.85 7.66
RF Grain filling 0.88 0.56 0.43 2.49 6.54
RF Maturity 0.85 0.68 0.50 2.52 6.77

XGBoost Pre-flowering 0.70 −0.10 0.37 2.88 8.74
XGBoost Flowering 0.59 0.44 0.45 2.71 7.73
XGBoost Grain filling 0.82 0.52 0.42 2.53 6.96
XGBoost Maturity 0.86 0.63 0.51 2.49 6.66
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Figure 6. Cross-validation results for maize yield prediction using machine learning regression
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3.3. Input Features of Importance for Maize Yield Prediction

The significance of various input features in predicting maize yield using the four
machine learning regression models is shown in Figure 7, based on the UAV data collected
for the maturity growth stage. Figure 7a shows that the EVI had the highest importance
in predicting maize yield when the CatBoost model was used. This feature also made a
significant contribution to the prediction for the GradBoost (Figure 7b) and RF (Figure 7c)
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algorithms, where the feature had the fourth-highest importance value for those models.
The green-derived textural features ranked the highest for the GradBoost, RF, and XGBoost
algorithms (Figure 7b–d). Green dissimilarity and green variance produced the second-
highest and third-highest variable importance in the CatBoost algorithm (Figure 7a) in
predicting maize yield. The importance of the textural bands is especially observed in the
RF model, where green homogeneity ranked first, green entropy ranked second, PBI ranked
third, and green dissimilarity ranked fourth. The XGBoost model showed that two textural
features, namely green homogeneity and red mean, had markedly more significance than
the other features (Figure 7d). The remaining features had relatively low significance (with
a contribution of <5%) (Figure 7d).
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3.4. Visualizing Temporal Analysis of Maize Yield Variability

The previous section produced varying levels of model performance, with the Grad-
Boost algorithm generally yielding favourable model performance, compared to the other
models. Figure 8a is a map of the observed yield values visualized with inverse distance-
weighted (IDW) interpolation. Maize yield maps generated using the GradBoost regression
predictions for four growth periods in 2022 provide valuable insights into the variability
of maize yield for the monitored fields. The yield distribution maps are generally het-
erogeneous on each date, thus highlighting the importance of maps in representing the
spatiotemporal variability of maize yield. Figure 8b shows maize yield estimates at the
pre-flowering stage of maize growth. The yield distribution is largely underestimated as
shown on the pre-flowering map with Field A with a 5.68 t/ha or lower yield. At the
flowering growth stage (Figure 8c), Field B had visibly higher yield estimates with large
sections of the plot having a yield higher than 7.16 t/ha. In comparison, most areas of
Field A had yield estimates below 5.68 t/ha for the same time. At the grain-filling stage
(Figure 8d), yield estimates were considerably higher than the previous two dates. Field
A showed a large area of the field with yield estimates greater than 8.64 t/ha and Field B
showed estimates between 4.19 and 5.65 t/ha with a small section of the field to the west
greater than 7.16 t/ha. The mature maize growth stage (Figure 8e) had yield estimates for
Field A largely above 7.16 t/ha whereas Field B had a yield between 5.68 and 8.63 t/ha with



Geomatics 2024, 4 228

sparse distribution across the field. These maps not only aid in assessing yield estimates but
also offer valuable information for optimizing agricultural practices and resource allocation
to maximize crop production.
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3.5. Maize Yield Spatiotemporal Variability

The maize yield estimates modelled using the GradBoost regression algorithm are
represented as box plots in Figure 9 and are a comparative analysis between the four dates
in 2022 for each field (Field A and Field B). Figure 9a provides clear results that show
lower yield values for the pre-flowering and flowering growing stages for Field A. The
grain-filling and mature stages had mean yield values (6.65 t/ha and 6.56 t/ha) that were
higher than the mean values for the pre-flowering and flowering growth stages (5.76 t/ha
and 5.47 t/ha) periods. Figure 9b shows that there are similar yield estimates predicted
for all four stages of the maize growth for Field B. The mean values for the pre-flowering,
flowering, grain-filling, and mature growth stages were 5.82, 6.07, 5.61, and 5.89 t/ha,
respectively.
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Figure 9. Box plots illustrating the maize yield predicted from GradBoost regression for (a) Field
A and Field B. The mean values (▲) were used to determine if the yield for each date per field was
statistically different. Subfigure (a) shows yield predictions for Field A, and subfigure (b) shows yield
predictions for Field B, both across four phenological stages: Pre-flowering, Flowering, Grain filling,
and Maturity.

Table 3 presents the results of Welch’s ANOVA test to examine the difference in the
predicted maize yield between different time periods for each field (Field A and Field
B). The statistical analysis of Field A indicates that there was a high significant difference
between the yield estimates, except for the comparison between the grain-filling and
mature maize growth stages (with no significant difference of p = 0.583). Maize yield
estimates were significantly different (p < 0.001) involving the grain-filling stage between the
various growth stages in Field B. This suggests that Field A produced more consistent and
significant changes over time. These findings highlight the importance of considering the
temporal variability of evaluating crop yields in various fields when assessing crop health.

Table 3. Summary of Welch’s ANOVA results for yield comparison between different dates for Field
A and Field B.

Date 1 Date 2 F-Statistic p-Value

Field A

Pre-flowering Flowering 3.99 0.047
Pre-flowering Grain filling 34.75 <0.001
Pre-flowering Maturity 109.49 <0.001

Flowering Grain filling 31.10 <0.001
Flowering Maturity 41.83 <0.001

Grain filling Maturity 0.30 0.58

Field B

Pre-flowering Flowering 2.14 0.15
Pre-flowering Grain filling 5.85 0.02
Pre-flowering Maturity 0.64 0.42

Flowering Grain filling 5.96 0.02
Flowering Maturity 0.91 0.34

Grain filling Maturity 5.59 0.02
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4. Discussion

This study evaluated the prediction of maize yield across four different maize growth
stages. UAV imagery was used to extract features such as VIs and GLCM textural features
from the RGB, red-edge, and NIR spectral bands. These feature bands were then assessed to
determine the highest correlation between them and the measured maize yield. Pearson’s
correlation coefficient was determined for the feature selection process and a correlation
coefficient threshold identified the selected features for each dataset. The selected features
were used as explanatory variables in four machine learning regression algorithms (RF,
GradBoost, CatBoost, and XGBoost) to estimate maize yield. The models were then used to
produce yield maps of the maize fields.

Feature selection is needed to identify the best features for yield estimation, and this
process enhances regression modelling by reducing data redundancy. This ensures that
the model only has the best possible feature inputs to improve model precision. Pearson’s
coefficient allowed us to focus only on a selected number of features to be used as important
inputs in the prediction process. The inclusion of multiple types of features proved to
be more beneficial overall to improve yield prediction accuracy. The correlation values
showed there was a difference in correlation level between different UAV-derived features
and yield measured during the four months (Figure 3). This finding is in agreement with
the study by Adak et al. [83], which found that using VIs at different growth stages is
beneficial for predicting maize yield. This is due to different VIs being more sensitive to
maize throughout the growing season [84,85].

The linear relationship between the predicted and observed maize crop yields shows
prevalent underestimation and overestimation for the pre-flowering stage (Figure 5), in-
dicating a lower yield prediction accuracy during the early stages. Higher prediction
accuracies were during flowering, grain-filling, and the late grain maturity stages. During
these stages, the characteristics of the crop change significantly with the intensity of green-
ness, chlorophyll concentrations, number of leaves, and plant height [29,86,87]. Therefore,
the growth period can influence the capability of the UAV data to predict maize yield.

In this study, when comparing the performance of the regression algorithms, the
accuracy of GradBoost (R2 = 0.67) and RF (R2 = 0.68) outperformed CatBoost and XGBoost.
The authors Khanal et al. [88] reported that RF outperformed the other machine learn-
ing algorithms with a test R2 score of 0.56, with the GradBoost model underperforming
(R2 = 0.43) for predicting maize yield. However, Du et al. [89] found that the GradBoost
ensemble learning was shown to produce R2 values of 0.799 compared to the RF model
(R2 = 0.749). The CatBoost algorithm has previously been shown to be successful in esti-
mating crop yield [90,91]. The variations in accuracies between different machine learning
algorithms are expected in studies related to maize yield predictions [17]. Differences in
the performance of these models from one study to another can be a result of a range of
factors such as environment, climate, maize genotype, time of prediction, and spectral
data available. The differences in accuracies also suggest the importance of investigating
multiple algorithms before reaching conclusions.

Examining the predictor variables used for estimating crop yield, the variable im-
portance was considered for all four machine learning algorithms for the mature growth
stage (Figure 7). This is used to evaluate how these variables can affect the prediction
error of the models. In most cases, GLCM-derived textural bands are ranked to have
the highest importance for the maize yield predictions. The PBI and EVI indices are the
only VIs that made a high contribution to the predictions. In the RF model, PBI had the
third-highest variable importance, this VI was previously shown to be an accurate indicator
of chlorophyll in maize crops [92]. The EVI index was the highest variable importance
in the CatBoost algorithm; the latter can have a high sensitivity to the biomass of maize
crops [93]. The green homogeneity and green dissimilarity textural features were of high
importance in the XGBoost, RF, and GradBoost models; these were previously identified
as indicators of maize yield [40] because of their ability to identify spatial complexities in
the cropping pattern [94]. The green entropy had the highest importance feature for the
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GradBoost model. The entropy textural feature is an excellent indicator of maize growth
variables [95]. A previous study showed that VIs can generate high-accuracy crop yield
models without GLCM variables [31]. The findings of these studies vary from the results of
our study where VIs (including NDVI, NDRE, VARI, TGI, and EXG) did not show a high
correlation with maize yield.

The gradient-based prediction models were extended to produce the spatial distribu-
tion of maize yield estimates from pre-flowering to mature growth stages for Fields A and
B (Figure 8). There is a definite difference between the crop maps predicted in the earlier
stages compared to the later stages of crop growth. The findings of our study show that
the pre-flowering season estimates underestimated maize yield. However, as the season
progressed, the estimates increased in predicted values. For example, this occurred in
large sections of Field B in the flowering stage, with values above 7.16 t/ha that were not
observed in the pre-flowering stage. The grain-filling and mature growth stages produced
large sections of much higher yields (>7.16 t/ha). Yield prediction is significantly related
to the canopy as specific physiological traits of the plants determine when the best yield
estimates are obtained [44]. The success of yield predictions in this study could be hindered
because of the presence of weeds identified in Field B in our previous research [96]. The
spectral characteristics identified by remote sensing imagery have a significant impact
on the differences in maize yield estimates throughout crop development. This is due
to spectral signatures being unique at different crop stages, for example, in estimating
yield during flowering, senescence, or grain filling [97]. This makes certain stages of crop
development more effective in estimating yield.

The statistical variability of maize yield across growth stages was demonstrated in
Figure 9. The findings showed that for Field A, considerably lower yield values for the pre-
flowering and flowering stages were detected by the UAV data. This was further confirmed
by Welch’s ANOVA test, which revealed statistically significant differences in the yield
values between the pre-flowering and maturity stages for Field A. In Field A, significant
changes in the yield values were observed during the earlier growth stages compared to the
later growth stages, with no significant differences noted between the later growth stages.
However, no statistically significant difference was found involving the pre-flowering and
mature stages for Field B, while significant changes in yield values were observed primarily
around the middle growth stages. These findings suggest that temporal patterns of yield
values can be identified in maize fields and an optimal time can be identified for the best
yield estimation, which, in this study, was the mature growth stages of the maize crop. The
findings of our study align with various studies that identified the optimal yield estimation
time to be around the middle to late season or the reproductive stages [41,46,48].

The findings of this study showed that the combination of UAV-derived RGB, NIR,
red-edge spectral bands, VIs, and GLCM-derived textural data with machine learning
algorithms can accurately predict maize yield. In this study, the input data and feature
selection played a significant role in improving yield prediction, as only the highest corre-
lation between observed yield and UAV-derived features was identified for model input.
Furthermore, boosting algorithms produced the most accurate results, with the GradBoost
algorithm predicting values. This model can be applied to other maize-growing farmlands
to assist farmers in yield estimations and crop management. The findings of this study
showed that the spatial and temporal variability of maize yield estimations is essential to
crop management. This can have implications for crop management, as the predictions at
earlier growth stages were less reliable than the mature yield estimates. A limitation of
this study was that the models were not tested in the early emergence crop stages; such
information could provide valuable insights to farmers for early crop management [98].
Early crop yield estimates could benefit from thermal and shortwave infrared spectral
bands; thus, future studies could test UAV systems equipped with additional spectral
information to what was used in the current study. Lastly, future studies should examine
other algorithms such as ensemble machine learning and deep learning that provide more
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complex modelling structures that might be needed to improve the prediction of yield on
different crop growth stages.

5. Conclusions

This research investigated the accuracy of UAV-acquired imagery to estimate maize
crop yield at different crop-growing stages. Four machine learning algorithms were used,
namely RF, GradBoost, XGBoost, and CatBoost. Feature importance was performed to
identify important features in regression models. The models were then used to develop
crop yield maps to assess the spatiotemporal variability of two maize fields over four
months. The findings indicated that GradBoost and RF outperformed the CatBoost and
XGBoost algorithms. The models indicate that some of the UAV-derived VIs and GLCM
textural variables were the most important predictors of maize yield. Specifically, green
entropy, green homogeneity, green dissimilarity, and EVI were the four most important
variables for predicting maize yield using the gradient model in the maturity stage. The
highest prediction accuracies were found during the mature growth stages, followed by
the grain-filling and flowering stages, while UAV data from the pre-flowering growth stage
had low accuracies. The GradBoost algorithm was then used to produce the spatiotemporal
variability of maize yield for the four time periods. Higher maize yield was predicted
for the grain-filling to mature stages compared to the pre-flowering to flowering stages.
These findings are valuable to the farmers managing these crops, as they provide essential
information on the utility of UAV-based imagery to monitor maize yield across the crop
growth stages. It is therefore anticipated that the adoption of this technology will improve
crop productivity by allowing timely management interventions to be implemented.
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