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A B S T R A C T   

This study aims to derive bioenergy from waste lather fat and citronella grass. Lather fat oil (LFO), citronella 
grass oil (CGO), a mixture of leather fat oil and citronella grass oil (LFCGO), and a nano-additive-incorporated 
mixture of lather fat oil and citronella grass oil (NFCO) were synthesized and used in diesel engines as the novelty 
of this study. ASTM standards were used to investigate and guarantee the fuel’s properties. According to the 
experimental report, the nanoadditive’s brake thermal efficiency and brake-specific fuel consumption were more 
comparable to diesel fuel. Compared to diesel, the NFCO blend reduced hydrocarbon, carbon monoxide, and 
particulate emissions by 6.48%, 12.33%, and 16.66%, respectively, while carbon dioxide and oxides of nitrogen 
emissions increased. The experiment’s outcomes were verified using an artificial neural network (ANN). The 
trained model exhibits a remarkable coefficient of determination of 98%, with high R values varying from 0.9075 
to 0.9998 and low mean absolute percentage error values ranging from 0.97% to 4.24%. Based on the experi-
mental findings and validation report, it can be concluded that NFCO is an efficient diesel fuel substitute.   

1. Introduction 

Energy insecurity and waste disposal are two major global hazards to 
human life. Converting waste into energy is an option for circumventing 
these obstacles (Kurczyński et al., 2022). Since the 1980 s, diesel crops 
have replaced food crops, resulting in a food shortage. As a result, 
non-edible oil was chosen as a substitute fuel to reduce energy insecurity 
(Vigneswaran et al., 2018; Dhinesh et al., 2018a). Numerous nations 
around the globe are increasing pollution protections and adapting 
emission standards while recognizing the need to utilize alternative fuels 
(Subramani et al., 2018; Ramalingam et al., 2018). Previously, in-
vestigators replaced diesel with vegetable oil. Today, rather than vege-
table oil, residual animal fats, non-edible seeds, biomass, leaves, resins, 
and vegetation are identified as the most cost-effective feedstocks for 

edible oil production (Parthasarathy et al., 2020; Perumal Venkatesan 
et al., 2019). Among these wastes, leather fat is the most cost-effective 
raw material for alternative energy and for reducing waste leather fat 
disposal, which substantially impacts the environment (Simsek and 
Uslu, 2020; Alptekin et al., 2015). However, its effectiveness is dimin-
ished when used in diesel engines that have yet to be modified. It is 
necessary to identify and evaluate additives capable of altering this 
biodiesel’s physicochemical properties, such as its density, viscosity, 
and surface tension (Parthasarathy et al., 2021; Vellaiyan et al., 2021). 
Yuvarajan et al (Devarajan et al., 2022a). investigated the 
physico-thermal properties of waste lather fat oil and concluded that 
only the methyl ester met ASTM specifications for physico-thermal 
properties. The viscosity of unprocessed animal fat oil was detrimental 
to diesel engines, decreasing their efficiency, causing carbon deposition, 
etc (Vellaiyan and Partheeban, 2020). The transesterification procedure 
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(Sivalingam et al., 2019), which converts crude oil to methyl ester using 
alcohol and additives, significantly improved the biodiesel’s properties. 
According to the investigation, the methyl ester of waste animal fat oil 
efficiently powers a diesel engine (Barrios et al., 2014). However, all 
biodiesel blends had reduced HC, CO, and smoke emissions, which could 
explain why mixtures have a higher oxygen content. According to the 
research, waste animal fat biodiesel mixtures produce fewer emissions 
but higher NOx levels (Lapuerta et al., 2009). 

The researcher (Altun and FevziYasşar, 2013) demonstrated that the 
decreased energy content of waste-lather fat methyl ester biodiesel 
decreased its engine performance. Because transesterification is an 
alcoholic process, transesterified oil typically contains less energy than 
crude oil (Keskin et al., 2020). Recent experiments have shown that 
combining low-viscosity oil with unprocessed biofuel enhances engine 
efficiency relative to transesterified oil (Dubey and Gupta, 2017). The 
investigator examined a DI-CI engine that operated on a blend of un-
processed jatropha and low-viscosity turpentine oil. Compared to 

unprocessed jatropha oil and jatropha biodiesel, the mixed mixture was 
found to provide superior engine efficiency and emission formation. 
This may be the result of improved atomization and mixture penetration 
(Dubey and Gupta, 2018). Only the lemon peel oil with minimal vis-
cosity was found to be affected by NOx (Ashok et al., 2018). The author 
investigated the use of diesel-citronella blends in diesel engines; all 
citronella blends emitted more NOx than diesel fuel alone (Senthur 
et al., 2022). When using biodiesel or biofuel in diesel engines, NOx 
emissions are typically elevated. This could be because of a link between 
the structure of fatty acids, a high cetane number, a decrease in the 
number of unsaturated compounds, or a shorter chain length in an alkyl 
ester (Nachippan et al., 2022). 

This study examines diesel engines that utilize B100 fuel, which is 
comprised of 50% eucalyptus oil and 50% blended methyl ester of 
paradise oil. The effectiveness and emission metrics of the B100 blend 
were superior. In contrast, NOx pollution presented the greatest threat. 
The principal issue with plant-based fuels is NOx emissions (Devan and 
Mahalakshmi, 2009). Alcohol, water (for emulsion fuel), gasoline (for 
dual fuel mode), and nanoadditives (Nanofluids) were among the al-
ternatives for minimizing NOx production (Senthilkumar et al., 2022). 
According to the researcher, adding nanomaterials (nanofluid) to the 
EGR system of an engine is the most effective way to simultaneously 
reduce NOx, HC, and CO emissions. This experiment added nano-
particles of cerium oxide to the propellant, lemongrass oil. It signifi-
cantly enhanced the performance and responsiveness of the emission 
output. Due to their high surface area-to-volume ratio, nanofluids 
simultaneously reduce exhaust emissions (Vellaiyan, 2020). The 
composition of this work was inspired by interference. The waste lather 
oil was extracted from leather factory waste fat; it was then combined 
with citronella biodiesel, which was extracted by steam distillation, and 
tested in a diesel engine in various proportions. 

2. Material and methods 

2.1. Test fuel production 

This study utilized citronella oil and residual lather fat oil as test fuel.  
Figs. 1 and 2 illustrate the production process in detail. Producing waste 
leather fat oil requires unprocessed skin, shorn hide, and waste flesh 
from the leather industry. Two stages are required to produce lather fat 
oil (LFO): hydrolysis and acid treatment (Lazaroiu et al., 2017). At a 
temperature of 110 ◦C, waste leather tissue, raw skin, and shaving hide 

Nomenclature 

CI Compression Ignition. 
CV Calorific value. 
CN Cetane Number. 
CO Carbon monoxide. 
NOx Oxides of Nitrogen. 
CO2 Carbon dioxide. 
HC Hydro Carbon. 
BSEC Brake Specific Energy Consumption. 
BTE Brake Thermal Efficiency. 
ASTM American Society for Testing and Materials. 
BP Brake power. 
ANN Artificial neural network. 
HSU Hart ridge Smoke Units. 
LGO Lemon Grass Oil. 
WCO Waste Cooking Oil. 
GC-MS Gas Chromatography-Mass Spectrometry. 
FT-IR Fourier Transform Infrared spectroscopy. 
MSE Mean Square Error. 
MAPE Mean Absolute Percentage Error.  

Fig. 1. Extraction of citronella oil (Ramalingam et al., 2020).  
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are mixed with water in a ratio of 1:2 at a ratio of 1:2. This process fa-
cilitates the decomposition of proteinaceous substances and the forma-
tion of leather fat oil, which is then acid-treated to remove impurities 
such as tannins and other residues. Fig. 2 depicts the impurities that 
were eliminated by applying phosphoric acid at 60 ◦C for 15 min in this 
procedure. As described in our earlier study (Ramalingam et al., 2020), 
the citronella fuel was extracted through steam distillation. 

2.2. Production of cobalt chromite nano additives 

CoCr2O4 (cobalt chromite) was synthesized using simple combustion 
(SC) technology in the current study. The three stages of this process 
were the redox solution at 250 ◦C, the start of combustion, and the end 
product. 50 g of cobalt and chromium nitrates were combined with 10 g 
of glycine in a glass vial. From the total number of oxidation results of 
the oxidizer, the ratio of cobalt and chromium nitrates to glycine in the 
first mixture was calculated. To generate a 3 g batch of CoCr2O4, suf-
ficient quantities of each reactant were dissolved in 100 ml of water to 

Fig. 2. Extraction of waste leather fat oil.  

Fig. 3. Extraction of cobalt chromite.  
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form a homogenous solution. After the hydration, 6.8-pH water was 
used to dissolve it. The pH had a minor effect on the addition of nano-
scale CoCr2O4 and its morphology. The mixture was then elevated to 
temperatures between 250 and 300 ◦C during the continuous agitation 
of the mixture at 200 rpm for 5–10 min. The solution then disintegrated 
as a result of its inherent self-ignition, foaming, and settling. Cobalt- 
chromite nanoparticles had been ball-milled to a fine mesh as a final 
phase. Fig. 3 depicts the synthesis procedure for the production of cobalt 
chromite nanoadditives. 

2.3. Fuel characteristics and property measurement 

Our previous research (Ramalingam et al., 2020) described the FTIR 
and GCMS analyses of citronella fuel. Figs. 4 and 5 present the outcomes 

of the FTIR and GCMS analyses (Krishnamoorthy et al., 2020). also 
describes the properties of synthesized cobalt chromite nanoadditives.  
Figs. 6, 7, and 8 depict the results of SEM, XRD, and EDX, respectively. 

2.3.1. XRD analysis 
X-ray diffraction (XRD) was used to determine the crystal structure 

and phase identification of nanocobalt chromite. To conform to and 
validate the material’s crystal structure, the test is rendered as an image. 
On an X-ray diffractometer, copper was used as the target material (Cu K 
diffraction source) to study a sample of nanocobalt chromite complex. 
The observed and simulated CoCr2O4 patterns are depicted in Fig. 6. It 
is stated that the prepared cobalt-chromite compound’s output closely 
resembles the simulation’s output. Because Cr2O3 (@) is a screening 
impurity phase near 33 ◦C, the single-step solution combustion- 

Fig. 4. FT-IR analysis of proposed fuel (Ramalingam et al., 2020).  

Fig. 5. GC-MS analysis of proposed fuel (Ramalingam et al., 2020).  
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combustion synthesis does not make a pure phase of CoCr2O4. This is 
because a lot of Cr ions are quickly oxidized to form Cr2O3 precipitate 
when a lot of Cr ions are present. The crystallite size of the prepared 
cobalt chromite was determined to be 22 nanometers using the Scherrer 
formula: 

DP =
0.94λ

β1
2

cosθ
(1)  

where, Dp = crystallite’s size in nm, Θ = degree theta and β radian. 
The crystalline size was calculated by using the Debye Scherrer 

equation, D = Kλ / βCosθ, crystalline size of this nanoparticle is 40 nm at 
36 degrees and 39 nm at 31 degrees. The maximum 2θ values are 
observed at 36 and 31, and the corresponding intensities are 2759 and 
1289, respectively. Therefore, the crystallinity index of this material is 
54%, which is measured from C.I = ((Imax – Imin)/Imax). 

2.3.2. SEM analysis 
An elemental analysis of the produced cobalt-chromite compound 

was performed using SEM microscopy. Fig. 7 depicts the SEM image 
obtained with an X-ray spectrometer and SEM analyzer at magnifica-
tions between 20,000 and 1,67,000. The experimental investigation was 
conducted at 8000 kV, and the results revealed a remarkable variety of 
porous particles. In contrast, the results indicate that when cobalt 
nanoparticles were oxidized from Cr to Cr2O3, their morphology 
changed substantially. An intermolecular chemical reduction of the 
cobalt complex leads to the formation of nanoscale particles in the new 
particles. 

2.3.3. EDX 
From the standpoint of energy composition, the mass of a substance 

that permits the formation of crystallites is relatively average. Fig. 8 
shows the energy dispersive X-ray (EDX) spectrum of the compound 
made from cobalt and chromium. This shows that the cobalt, chromium, 
and oxygen parts are there. The collected data demonstrates conclu-
sively that the manufactured CoCr2O4 composition is free of impurities. 

2.3.4. Thermo-physicochemical properties 
The thermo-physicochemical properties of test fuels are displayed in  

Table 1. The calorific value of a fuel sample was determined using a 
boom calorimeter (Athena Technology, India). The calorific value 
quantifies the quantity of energy released when one unit of fuel burns in 
oxygen. In order to measure heat according to ASTM D5865, a measured 
sample of fuel is completely consumed in an explosive calorimeter. 
Using an instrument for fuel ignition, the cetane number of the fuel 
sample was measured. The cetane number (CN) is a measurement of a 
fuel’s combustion condition or ignition delay. This instrument employs a 
more uncomplicated and reliable method for measuring CN than the 
CFR cetane engine. To detect CN in accordance with ASTM D613, a 
constant volume of fuel is introduced into a combustion chamber at 
approximately 575 ◦C. 

A viscometer measures a fluid’s viscosity (resistance to internal 
flow). Determine the time required for the heated water to elevate the 

Fig. 6. SEM analysis of nanoparticle.  

Fig. 7. XRD analysis of nanoparticle (Krishnamoorthy et al., 2020).  

Fig. 8. EDX analysis of nanoparticle (Krishnamoorthy et al., 2020).  

Table 1 
Thermo-physicochemical properties of test fuels.  

Properties SDL CGO LFO LFCO NFCO 

Calorific Value 
(MJ/kg) 

44.1 
± 0.05 

38 
± 0.05 

28 
± 0.05 

34 
± 0.05 

36 
± 0.05 

Cetane number 47 
± 0.03 

55 
± 0.03 

35 
± 0.03 

38 
± 0.03 

37 
± 0.03 

Kinematic 
Viscosity (cSt) 

2.9 
± 0.03 

4.2 
± 0.03 

4.3 
± 0.03 

1.5 
± 0.03 

1.2 
± 0.03 

Flash Pt (◦C) 66 
± 0.02 

52 
± 0.02 

85 
± 0.02 

75 
± 0.02 

71 
± 0.02 

Density ( kg/m3) 820 
± 0.04 

900 
± 0.04 

907 
± 0.04 

902 
± 0.04 

904 
± 0.04  
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oil’s temperature to the point where the conduit can be sealed. Remove 
the seal when it reaches the end and time how long it takes to descend. 
The longer it takes for oil to ascend and descend, the greater its viscosity. 
The measurements were conducted according to ASTM D445 standards. 

A device called a flash point analyzer is used to determine the flash 
point of a sample, or the temperature at which the sample vaporizes into 
a different compositional state that can be ignited in the atmosphere. 
The oil sample is placed in an open metal container for this procedure. 
The oil is then heated at a predetermined rate while maintaining a 
continuous, minute pilot flame (igniter) This continues until a detona-
tion occurs. The temperature is then used to determine the oil’s flash 
point. The measurements were carried out per ASTM D93. 

Using the unitor density meter, which measures fuel density by 
lowering a hydrometer into heated oil, the density of the fuel sample was 
determined. The density of an object or substance is equal to its mass, m, 
divided by its volume, V, or m/V. The measurements were carried out 
per ASTM D1298. 

2.4. Test fuel matrix 

Diesel was utilized to evaluate the efficacy of four different combi-
nations, including lather fat oil (LFO), citronella grass oil (CGO), a 
mixture of leather fat oil and citronella grass oil (LFCO), and a nano- 
additive containing a mixture of lather fat oil and citronella grass oil 
(NFCO). The comprehensive test matrix is shown in Table 2. 

2.5. Engine matrix 

A conventional one-cylinder Kirloskar diesel engine was utilized in 
the test. It features a 5.2-kW diesel engine with direct injection and 
naturally aspirated combustion. Air is brought into the cylinder through 
the inlet manifold during the vacuum stroke. Fig. 9 depicts the engine’s 
schematic architecture, while Table 3 details the engine’s precise 
specifications. 

2.6. Experimental procedure 

To prevent the engine from overheating, the flow of engine coolant 
and the level of lubrication lubricant were inspected before the 

Table 2 
Test fuel matrix.  

SI 
No 

Test 
Name 

Fuel % Nano 
additive 

Load 

1. SDL 100% Diesel Nil 0–100% 
2. CGO 100% Citronella oil Nil 0–100% 
3. LFO 100% Waste leather fat oil Nil 0–100% 
4. LFCO 50% Waste leather fat oil +50% 

Citronella oil 
Nil 0–100% 

5. NFCO 50% Waste leather fat oil +50% 
Citronella oil 

100 ppm 0–100% 

*Injection timing 23bTDC, Injection Pressure 200 bar. 

Fig. 9. Engine schematic setup.  

Table 3 
Test Engine specification.  

Make Kirloskar TV-1 

Type 4-stroke engine 
Cooling Water 
Bae Engine Bore 86.6 mm 
Bae Engine Stroke 112 mm 
Compression ratio 17.6:1 
Power Rated 5.1 kW 
Speed 1500 rpm 
IT 23 deg before TDC 
Nozzle 0.3 mm and 3 nozzles 
Bowl Hemispherical  

Table 4 
Specifications of the emission analyzers.  

S. 
No 

Instrument Type Manufacturer Measuring 
Range 

standard 
error 

1 Smoke 
meter 

AVL 
Smoke 
meter 

AVL India Pvt. 
Ltd. 

0–100 HSU ±0.1 

2 Five gas 
analyzer 

Krypton 
290 five 
gas 
analyzer 

SMS Auto line 
Equipment’s 
private limited 

CO – (0–10%) 
CO2 – (0–20%) 
HC – 
(0–10000 ppm) 
NOX – 
(0–5000 ppm) 

±0.1 
±0.1 
±0.05 
±0.02  
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experiment began. Initially, diesel was utilized under the following load 
conditions: 0%, 20%, 40%, 60%, 80%, and 100%. After initial readings 
were recorded, the diesel fuel was disposed of. The test engine was 
injected with various fuel mixtures to evaluate its performance and 
emissions. There were up to five repetitions of each experiment, 
regardless of the accuracy of the results. On the cylinder head, pressure 
sensors are installed to detect combustion characteristics. An AVL DI gas 
analyzer and a smoke analyzer are used to measure the exhaust emis-
sions. In this investigation, the engine decarbonizing machine was uti-
lized. For each fuel test, hydrogen and oxygen derived from water are 
circulated through an engine’s air intake and exhaust systems to remove 
any residuals. Table 4 details the characteristics of the emission ana-
lyzers. Every measurement was logged, graphed, and analyzed. 

2.7. Ambiguity examination 

The most frequent causes of instrument errors are the instrument’s 
condition, the surrounding environment, the method of observation, 
and the testing procedure. Variations in instrument manufacturers, 
calibration procedures, and data acquisition procedures may contribute 
to experimental uncertainty. Utilizing uncertainty analysis prevents 
fluctuations in intended experimental outcomes. Table 5 displays the 
ambiguity of various measuring devices and parameters. 

Totaluncertainty(TU)=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(Totalperformancedeeds)2
+(Totalemissiondeeds)2

√

(2)  

TU=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(UCBTE)
2
+(UCBSEE)

2
+(UCHC)

2
+(UCCO)

2
+(UCNOx)

2
+(UCSmoke)

2
√

(3) 

TU =±1.378%. 

2.8. ANN model 

A highly complex neural network regulates, supports, determines, 
and correlates critical thought in the human brain. The human brain’s 
neural network may be functionally equivalent to the ANN method. This 
method enables the investigation, simplification, and identification of 
infinite parameters. These neurons can be camouflaged more effectively 
as a large number of neurons. The outer layers, which correspond to 
synaptic weights, are linked to the concealed layers, and MSE aims to 
minimize the performance function. The previously mentioned MSE 
performs remarkably well in the background of operation and possesses 
properties that improve convexity, regularity, and differentiation. The 
selection of the learning algorithm to determine the transfer function is 
crucial in ANN. SCG, LM, RP, and BFGS are just a few of the available 
transfer function selection techniques. The previously mentioned MSE 
performs remarkably well in the background of operation and possesses 
properties that improve convexity, regularity, and differentiation. 
Important in ANN is the selection of the learning algorithm to determine 
the transfer function. SCG, LM, RP, and BFGS are just a few of the 
available transfer function selection techniques. According to Table 6, 
the configuration of the neural network for these parameters was 
4–11–1, 4–11–1, 4–7–1, 4–7–1, 4–11–1, 4–11–1, and 4–11–1, 

respectively. 
After cross-validating 70% of the trained network with 15% of the 

experimental data, the performance of the network was assessed using 
the remaining 15% of the data. To predict the performance of ANN 
models, the regression coefficient (R2) is considered. Using the MSE, 
RMSE, and MAPE values, the ANN model was built from the models 
proposed by different researchers. These fundamental equations are 
used to calculate the regression coefficient (R2) and the values used to 
build the ANN model: 

R2 = 1 −
∑n

i=1(Ti − Oi)2

∑n
i=1Oi2 (4)  

MAPE =

{
100
n
∑n

i=1

(
Ti − Oi

Oi

)}

(5)  

MSE =
1
n

{
∑n

i=1

(
(Ti − Oi)2)

}

(6)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(Ti − Oi)2

√

(7) 

Utilizing R, MSE, and MAPE values as standard numerical indicators, 
the study is evaluated. Based on these metrics, iterations are either 
continued or terminated. If R is greater than 0.98 and MSE and MAPE 
are less than 0.001% and 5%, respectively, the ANN model will end its 
iteration. If these conditions are not met, the cycle will terminate after 
100 iterations. Engine performance and emission characteristics are 
evaluated using an ANN model. Seven outputs, including HC, CO, CO2, 
NOx, and smoke opacity (emission parameters), as well as BTE and BSFC 
(performance parameters), were generated by the ANN model, which 
was constructed using two input parameters. Fig. 10 depicts the ANN 
model’s configuration. 

3. Result and discussion 

3.1. BTE vs. BMEP 

The BTE is used to evaluate the engine’s ability to convert thermal 
energy from the fuel supply into mechanical work. The cetane number, 
heat content, and viscosity are the principal factors that have a signifi-
cant impact on the outcomes of BTE (Erdiwansyah et al., 2020; Ram-
alingam et al., 2022). Fig. 11 depicts the disparity between the BTE for 
various test fuels at different BMEPs. Diesel fuel had a higher BTE than 
other mixtures, with NFCO being the blend that was closest to diesel. It is 
evident due to the lower energy content of CGO, LFCO, and LFO. Diesel 
has a maximal BTE of 32.39%, 0.60 points higher than NFCO (31.7%). 
The BTE for mixtures of CGO, LFCO, and LFO is 30.80%, 30.09%, and 
28.80%, respectively. According to the results, NFCO was determined to 
be the optimal blend. This may be a result of the high ratio of nano-
additives’ surface area to volume and the presence of oxygen in citro-
nella leather fat oil. Due to the low energy content and increased 
viscosity of the LFO, its BTE was minimal. These clarifications align with 
Vellaiyan’s (Vellaiyan, 2023) findings from 2023. Due to its decreased 
energy content and increased viscosity, he determined that residual 
biodiesel from a lather factory contained minimal BTE. The NFCO was 
selected as the finest alternative to diesel fuel overall. The BTE was 
determined by applying the following equations: 

BTE =
BP

TFC × CV
(%) (8)  

BP =
2πNT

60
× S (kW) (9)  

TFC =
ρ × ν

t
(g/s) (10) 

Table 5 
Ambiguity examination.  

S.No Measured parameters Parentage uncertainty  

1. BTE 0.8%  
2. BSFC 0.6%  
3. Pressure 0.2%  
4. BP 0.4%  
5. Crank angle encoder 0.05%  
6. Engine Speed 0.1%  
7. Dynamometer Load 0.2%  

K. Ramalingam et al.                                                                                                                                                                                                                           



ProcessSafetyandEnvironmentalProtection177(2023)1234–1248

1241

Table 6 
Prediction accuracy value for BTE, BSEC, CO, CO2, HC, NOx and Smoke using different training algorithm.  

Learning 
algorithm 

Network 
structure 

Predication 
Accuracy 

Predication Accuracy Predication Accuracy Predication Accuracy Predication Accuracy Predication 
Accuracy 

Predication 
Accuracy 

BTE BSEC CO CO2 HC NOx SMOKE 

Training 
set 

Testing 
set 

Training 
set 

Testing 
set 

Training 
set 

Testing 
set 

Training 
set 

Testing 
set 

Training 
set 

Testing 
set 

Training 
set 

Testing 
set 

Training 
set 

Testing 
set 

SCG 4–5–1  9.42  97.34  98.12  96.78  95.69  92.99  98.69  93.69  96.86  94.89  98.26  95.78  91.99  94.76 
SCG 4–6–1  96.52  94.23  99.23  95.86  95.78  93.06  95.23  92.45  95.23  95.67  95.48  94.76  2.85  93.88 
SCG 4–7–1  98.23  96.31  97.36  94.78  95.46  91.29  96.79  89.96  94.78  93.85  89.56  93.28  93.48  92.79 
SCG 4–8–1  97.65  95.76  96.59  94.62  94.89  90.26  97.23  88.42  93.86  92.89  88.79  91.29  94.82  91.99 
SCG 4–9–1  95.46  97.25  99.29  94.78  97.88  94.65  95.69  89.69  95.99  96.88  93.68  93.68  93.48  90.82 
SCG 4–10–1  98.74  96.88  98.67  93.78  96.28  93.08  94.44  90.36  97.89  95.99  94.59  92.79  96.85  91.79 
SCG 4–11–1  99.22  98.40  99.36  97.99  95.78  93.62  93.69  91.36  95.62  94.89  96.89  93.18  95.37  93.89 
LM 4–5–1  98.74  91.34  98.16  96.99  1.69  91.28  99.01  92.63  94.78  93.69  92.89  94.56  94.99  94.79 
LM 4–6–1  98.23  94.56  99.09  97.12  94.78  92.99  98.62  93.96  96.78  94.99  97.89  96.01  95.68  93.49 
LM 4–7–1  97.26  95.76  99.76  97.09  92.69  93.67  97.25  94.99  93.79  95.62  95.28  95.78  96.31  92.88 
LM 4–8–1  99.03  96.45  96.65  97.86  99.01  91.99  95.23  92.78  96.88  93.89  96.18  94.99  95.08  91.99 
LM 4–9–1  98.26  97.23  95.56  97.28  98.23  91.99  94.62  91.78  95.36  91.69  97.29  95.62  94.78  93.45 
LM 4–10–1  98.76  96.78  95.99  95.23  97.62  90.68  93.26  90.78  94.78  92.59  94.44  94.78  96.47  94.89 
LM 4–11–1  97.99  97.99  96.39  92.89  97.23  92.73  91.09  93.69  91.99  93.69  94.59  96.78  95.23  92.99 
RP 4–5–1  98.23  98.06  99.08  91.78  93.26  92.69  96.28  94.01  96.88  95.78  98.89  95.29  98.72  94.39 
RP 4–6–1  98.65  95.69  97.69  96.25  94.28  90.88  95.78  93.65  93.89  96.19  97.48  94.88  96.48  94.96 
RP 4–7–1  99.14  94.78  98.07  93.72  95.08  90.70  94.99  92.99  92.74  97.02  93.48  95.38  95.48  92.99 
RP 4–8–1  97.69  97.58  94.67  92.22  91.09  91.29  93.69  91.99  89.99  96.78  89.98  94.81  94.62  93.46 
RP 4–9–1  97.12  96.69  92.69  91.11  91.69  92.39  92.68  90.28  88.69  95.28  88.28  89.62  92.78  94.86 
RP 4–10–1  95.69  98.12  98.04  96.66  92.89  93.39  95.62  92.37  87.52  96.89  92.57  89.88  93.48  94.29 
RP 4–11–1  99.74  93.39  92.26  96.28  93.66  90.88  94.78  91.73  98.72  97.86  93.58  91.29  96.49  95.06 
BFGS 4–5–1  95.59  96.27  95.78  95.55  94.69  89.26  96.45  92.68  97.59  94.72  94.78  95.38  95.78  93.78 
BFGS 4–6–1  96.99  91.99  94.37  94.44  95.61  88.16  93.69  93.33  94.63  96.19  95.38  94.80  96.18  91.11 
BFGS 4–7–1  98.76  96.09  98.78  93.39  93.78  88.23  95.85  94.08  93.78  95.89  96.48  95.99  97.28  90.79 
BFGS 4–8–1  99.03  96.79  96.78  97.01  95.29  88.92  96.69  92.99  95.85  97.48  96.17  96.30  96.18  92.86 
BFGS 4–9–1  98.89  97.77  95.78  96.06  93.78  87.79  97.26  93.99  92.79  93.89  95.27  89.99  94.49  94.99 
BFGS 4–10–1  97.66  98.07  94.23  95.29  97.28  86.29  93.69  91.28  91.99  92.59  96.47  89.96  93.18  93.49 
BFGS 4–11–1  98.99  96.08  96.78  94.24  94.09  85.29  94.99  92.78  96.45  94.89  94.61  88.99  88.96  95.89  
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3.2. BSEC vs. BMEP 

BSEC is the quantity of energy a motor needs to generate one 
kilowatt-second of power (Vellaiyan and Amirthagadeswaran, 2020). 
The amount of energy that one hour’s worth of petroleum combustion 
produces is known as BSEC. Fig. 12 depicts the disparity between the 
BSEC for different test fuels at different BMEPs. Diesel fuel had a higher 
BSEC than other mixtures, with NFCO having the closest BSEC to diesel. 
It is evident due to the lower energy content of CGO, LFCO, and LFO. 
These explanations are consistent with Devarajan Yuvarajan et al.’s 
(Devarajan et al., 2022b) findings from 2022. The authors determined 
that leather industry-derived fat oil required more energy than diesel. In 
addition, Krishnamoorthy et al. (2019) (Ramalingam et al., 2019) 
demonstrated that citronella oil consumed more energy than diesel, 
which may account for its lower energy content. This result trajectory 
mirrored that of BTE, as shown in Fig. 13 for BTE and BSEC. The lowest 
diesel BSEC is 9.42 MJ/kW-hr, which is 9% less than the NFCO value of 
10.42 MJ/kW-hr. The BSECs of CGO, LFCO, and LFO compositions are 
10.57, 11.42, and 11.86 MJ/kW/hr, respectively. This may be a result of 
the high ratio of nanoadditives’ surface area to volume and the presence 
of oxygen in citronella leather fat oil (Vellaiyan Sureh, 2020). Based on 
the results, it was determined that NFCO was the optimal composition 

Fig. 10. Configuration of ANN model.  

Fig. 11. BTE Vs BMEP.  

Fig. 12. BSEC Vs BMEP.  

Fig. 13. BTE & BSEC Vs BMEP.  

Fig. 14. HC Vs BMEP.  
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due to its renewability, affordability, and accessibility. The BSEC was 
computed using the following equation (Eq. 11). 

BSEC =
TFC × 3600

BP
× CV(MJ/kW − hr) (11)  

3.3. HC vs. BMEP 

According to standard test procedures, exhaust gas emissions (CO, 
HC, CO2, and NOx) are calculated in parts per million (PPM) and con-
verted to grams per kilowatt-hour (g/kW-h). Typically, the amount of 
hydrocarbons (HC) in tailpipe emissions depends on the characteristics 
of the fuel and the engine’s operating conditions (Asaithambi et al., 
2020). Fig. 14 depicts the variation in HC for various test fuels at 
different BMEPs. Due to a decline in volumetric efficiency and an in-
crease in fuel accumulation, the amount of hydrocarbons in exhaust 
emissions has increased with increasing engine load (Vellaiyan et al., 
2022a). As diesel contains no oxygen, it emits significantly more hy-
drocarbons than biofuel mixtures. Moreover, it has been found that 
biofuel mixtures only reduce HC emissions under moderate and heavier 
loads. It may be a result of faster mixing and evaporation rates as well as 
the burn procedure being completed within the allotted time. However, 
the biofuel compound contained more oxygen. According to Dhinesh, 
et al. (2018a) and Dhinesh et al. (2018b), these explanations are 
dependable. Due to the presence of oxygen, the authors reported that all 
lemongrass oils had lower HC emissions than diesel. The HC was overall 
lower. Diesel’s HC content is 11% greater than that of LFO 
(0.098 g/kW-h). HCs for NFCO, CGO, and LFCO at maximum load are 
0.102 g/kW-hr, 0.101 g/kW-hr, and 0.105 g/kW-hr, respectively. Sur-
face tension and propellant viscosity are also crucial to the blending and 
atomization processes. They reduce the size of the particles, and rapid 
evaporation completely consumes the fuel within the cylinder, reducing 
HC emissions (Devarajan et al., 2022c). 

3.4. CO vs. BMEP 

Lack of oxygen or air in the combustion chamber is the primary cause 
of CO emissions, which are simply a byproduct of the intermediate zone. 
CO is an odorless, colorless, and toxic gas (Vellaiyan et al., 2022b).  
Fig. 15 depicts the difference in CO for various test fuels at different 
BMEPs. As the BMEP of the engine decreases, it is evident that the CO 
value rises; this may be due to high fuel accumulation and a lower 
cylinder temperature, which leads to incomplete combustion (Gurusamy 
et al., 2023). The lack of oxygen may explain why diesel produces more 
carbon monoxide than biofuel mixtures. Diesel has 15% higher CO 

emissions than NFCO (5.30 g/kW-hour). At full capacity, CGO, LFCO, 
and LFO emit 6.06 g/kW-hr, 6.75 g/kW-hr, and 6.93 g/kW-hr of CO, 
respectively. Ramalingam et al. (2023) ensure the accuracy of these 
annotations. They found that turpentine oil biofuel contained less car-
bon monoxide (CO), which may explain its higher oxygen (O2) content 
and efficient combustion. CI engines that use any oxygenated fuel, such 
as alcohol, biofuel, methyl ester, or enhanced viscosity fuel, reduce CO 
enrichment, according to multiple studies. 

3.5. NOx vs. BMEP 

NOx production typically occurs at elevated temperatures. Nitrogen 
and oxygen react within the cylinder at elevated temperatures to form 
NOx. The NOx production rate increases in stoichiometric conditions 
(Devarajan et al., 2022d). Fig. 16 depicts the variation in NOx for several 
test fuels at varying BMEPs. Due to diesel’s low O2 concentration, it 
emits substantially less NOx than biofuel blends. The complete biofuel 
mixture, excluding LFO, produced more NOx than diesel due to its 
higher O2 content, which increases the peak combustion temperature. 
Due to rapid combustion, the thermal energy from the previous cycle, 
and the availability of oxygen, NOx emissions from a biofuel blend in-
crease as engine load increases (Muthuraman and NanthagopalKasia-
nantham, 2023). Diesel has 20% lower NOx emissions than CGO 
(12.75 g/kW-hour). NOx emissions at maximal load for NFCO, LFCO, 
and LFO are 10.96 g/kW-hr, 11.53 g/kW-hr, and 10.04 g/kW-hr, 
respectively. Less NOx emissions were detected with LFO fuel, which 
may indicate incomplete combustion. On the other hand, NFCO pro-
duced less NOx, which may have been due to the presence of nano-
particles. These explanations are irrefutable, according to Suresh 
(Vellaiyan et al., 2023). He determined that the biodiesel mixture con-
taining titanium oxide reduced NOx emissions more than diesel. The 
NFCO was selected as the most effective alternative to diesel engines for 
reducing NOx emissions. This may be a result of the high ratio of 
nanoadditives’ surface area to volume and the presence of oxygen in 
citronella leather fat oil. 

3.6. CO2 vs. BMEP 

CO2 is one of the primary causes of greenhouse gas (GHG) emissions, 
as it is the byproduct of complete combustion. It is indispensable for the 
growth and photosynthesis of plants and vegetation. When burning 
fossil fuels, carbon atoms are released into the atmosphere, causing CO2 
levels to rise; however, when burning biofuels derived from plants and 

Fig. 15. CO Vs BMEP.  
Fig. 16. NOx vs. BMEP.  
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trees, CO2 is recirculated rather than rising (Muthuraman and Nantha-
gopalKasianantham, 2023; Vellaiyan et al., 2023). Fig. 17 depicts the 
variation in CO2 for different test fuels at varying BMEPs. The trend 
resulted in less CO2 formation as the burden increased, as depicted by 
the graph. Diesel emits 5% less CO2 per kilowatt-hour than CGO 
(951.40 g/kW-hr). At full load, NFCO, LFCO, and LFO emit 
905.4 g/kW-hr, 929.23 g/kW-hr, and 881.90 g/kW-hr of CO2, respec-
tively. According to the results, LFO fuel emitted less CO2, which may be 
the cause of incomplete combustion. NFCO, however, produced more 
CO2 than NFCO. Suresh V. et al. consistently provide these explanations. 
He determined that soybean biodiesel mixed with zirconium oxide 
produced less carbon dioxide than soybean biodiesel alone. This may be 
due to the nanofluid’s high surface-to-volume ratio. 

3.7. Smoke vs. BMEP 

Fig. 18 depicts the variation in fumes produced by various test fuels 
with differing BMEP. The amount of oxygen present in the test propel-
lant has a significant impact on the production of smoke. In other words, 
there is a strong association between smoke emissions and fuel mixture 
(Okolie et al., 2022). It is evident at maximum capacity that smoke 

opacity in exhaust emissions increases as load increases. Diesel emits 
significantly more vapor than biofuel blends, which is likely due to 
diesel’s low oxygen content. In contrast to diesel, the complete biofuel 
mixture produced less smoke due to its lower aromatic content, lower 
C/H ratio, and higher oxygen content, which enhance combustion and 
fuel oxidation (Gad et al., 2021). Because NFCO, CGO, LFCO, and LFO 
contain more oxygen than NFCO, CGO, and LFO, diesel fuel is reported 
to produce more smoke than other mixtures. These explanations align 
with previous findings (Devarajan et al., 2022d; Vellaiyan et al., 2023). 
The maximal smoke level of diesel is 16.2, which is 20% higher than 
NFCO (13.5). The smoke for CGO, LFCO, and LFO mixtures is 13, 9, and 
15, respectively. According to the results, NFCO was determined to be 
the optimal blend. This may be a result of the high ratio of nano-
additives’ surface area to volume and the presence of oxygen in citro-
nella leather fat oil. 

3.8. Prediction of engine behaviour by ANN model 

In this study of prediction, ANN models are used to predict nonlinear 
issues. Using four distinct fuel compositions, including lubrication fat oil 
(LFO), citronella grass oil (CGO), a combination of leather fat oil and 
citronella grass oil (LFCGO), and a combination of leather fat oil and 
citronella grass oil containing nanoadditives The model is also used to 
determine engine performance and emission limitations. The created 
ANN model is straightforward and reliable, and there are available 
prediction toolboxes. 

The two input parameters of the MATLAB network are the brake 
power and the fuel mixture, and the seven output parameters are NOX, 
CO, HC, CO2, haze, BTE, and BSEC. Based on data from test runs, the 
diesel engine prediction model network powered four distinct fuel 
blends: leather fat oil (LFO), citronella grass oil (CGO), a combination of 
leather fat oil and citronella grass oil (LFCGO), and a combination of 
leather fat oil and citronella grass oil with nano additives. The perfor-
mance of the constructed model was evaluated using a total of 30 test 
patterns, of which 80% (24 patterns) were selected at random for 
training and 20% (6 patterns) were designated for testing and 
validation. 

To ensure the network’s success, the best learning strategies and 
hidden neuron (HN) counts must be selected. In this study of prediction, 
the MSE results and an R-value report were used to determine the 
optimal learning algorithms for the architecture and number of HN, 
which were then subjected to a series of trial-and-error experiments 
(Samuel et al., 2021). An increase in R and a decrease in MSE often 
determine the optimal configuration of a neural network for the number 
of HNs and learning techniques. R and RMSE were found to have the 
highest and lowest values, respectively, in this study of prediction 
(Olusegun et al., 2016). On the basis of these values, it was determined 
that the LM learning algorithms and eleven hidden neuron counts were 
the most effective solutions (Mokashi et al., 2021), and these values 
were recorded in Tables 7 and 8. Fig. 19 illustrates the disparity between 
ANN predictions and experimental results. 

RMSE values for BTE, BSEC, CO, CO2, HC, NOx, and smoke are 
respectively 0.405, 0.026, 0.0206, 0.0158, 0.0195, and 2.685. R-values 
for BTE, BSEC, CO, CO2, HC, NOx, and pollution are 0.9965, 0.9889, 
0.9784, 0.95, 0.9076, and 0.9849, respectively. Remember that the 
RMSE value represents the quantity of error encountered during the 
process of learning. The MAPE values for BTE, BSEC, CO, CO2, HC, NOx, 
and pollution are 1.15%, 0.87%, 3.17%, 2.62%, 4.26%, 1.68%, and 
0.97%, respectively. According to the presently developed ANN model, 
the relative error will be less than 4%, which is within the acceptable 
range. According to the error analysis, the data correspond to the 
experimental analysis and ANN forecasts. In addition to the information 
presented in Table 8, the R-value ranges between 0.9076 and 9965. The 
MAPE values vary between 0.98% and 4.26%. This is extremely trivial. 
Evidently, the constructed ANN model is a potent tool with the ability to 
predict engine performance and emission parameters that are extremely 

Fig. 17. CO2 Vs BMEP.  

Fig. 18. Smoke Vs BMEP.  
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close to experimental results. The researcher emphasized and elaborated 
on how the ANN model reduces experimental cost, experimentation 
time, and analytical complexity. This type of prediction model is 
extremely useful for mapping the engine’s output response, and it also 
assists the control system. 

4. Conclusion 

The production of biodiesel from waste has many advantages. It is 
beneficial for the environment because it facilitates the administration 
of waste, a task that is often difficult to execute. There is no competition 
between food and waste, so food prices will not be affected. Regarding 
carbon dioxide emissions, the use of organic waste should be weighed 
favourably. The examination of the obtained test results and the 
research conducted on a novel combination of leather fat oil, citronella 
oil, and cobalt chromite nanoadditives enabled the following 
conclusions:  

• The NFCO blend provides better BTE and BSEC performance than 
other biofuel compositions. In addition, the NFCO blend’s response 
to exhaust emission output was greener than conventional diesel. 

• The developed ANN network was utilised to predict both perfor-
mance and emission output responses, yielding commendable re-
sults, as evidenced by the fact that the value of R was increased to 
97% for all output constraints.  

• In addition, the ANN model is more accurate, with high R values 
ranging from (0.9076–0.9965) and low MAPE values ranging from 
(0.98%− 4.26%).  

• It is evident that the developed model is a useful instrument, as it has 
an excellent capacity to predict engine performance and produce 
results that are much closer to experimental findings. 

The financial cost of incorporating nanoparticles, even though doing 
so efficiently enhances the overall combustion performance of the en-
gine as well as the quality of the emissions produced, is a source of 
concern. In addition, nanoparticles that are released into the atmosphere 
present a risk to the surrounding environment. Nanoparticles that are 
both economical and friendly to the environment are necessary in this 
field. Future research should also establish an electrostatic precipitator 
for diesel engines to retain nanoparticles in the exhaust. 

Table 7 
Summary of statistical value for BTE, BSEC, CO, CO2, HC, NOx and Smoke using different training algorithms.  

Parameters Learning algorithm Network structure Training Set Testing set 

R RMSE MAPE R RMSE MAPE (%) 

BTE SCG 4–11–1  0.9992  0.401  0.99  0.9965  0.405  1.15  
LM 4–11–1  0.9991  0.389  1.25  0.9952  0.459  2.15  
RP 4–5–1  0.9976  0.372  2.84  0.9931  0.526  2.38  
BFGS 4–10–1  0.9823  0.402  3.12  0.9960  0.428  3.12 

BSEC SCG 4–11–1  0.9998  0.019  0.65  0.989  0.026  0.87  
LM 4–8–1  0.9986  0.013  0.79  0.972  0.031  1.38  
RP 4–10–1  0.9972  0.021  0.83  0.979  0.038  2.89  
BFGS 4–8–1  0.9991  0.018  1.69  0.983  0.046  4.18 

CO SCG 4–9–1  0.9812  0.0200  2.38  0.9621  0.0228  3.89  
LM 4–7–1  0.9991  0.0201  2.18  0.9784  0.0206  3.17  
RP 4–5–1  0.9745  0.0189  2.54  0.9542  0.0399  4.10  
BFGS 4–5–1  0.9789  0.0179  3.09  0.9432  0.123  2.99 

CO2 SCG 4–5–1  0.976  0.0099  2.94  0.941  0.286  3.99  
LM 4–7–1  0.998  0.0151  1.82  0.955  0.0158  2.60  
RP 4–5–1  0.956  0.0139  3.08  0.948  0.0458  2.88  
BFGS 4–7–1  0.948  0.0128  1.99  0.896  0.0389  2.92 

HC SCG 4–9–1  0.9681  0.0154  3.29  0.9034  0.0996  4.58  
LM 4–7–1  0.9482  0.0168  2.89  0.8742  0.0648  4.37  
RP 4–11–1  0.9952  0.0182  2.48  0.9076  0.0195  4.26  
BFGS 4–8–1  0.9901  0.0159  4.01  0.8894  0.0784  4.84 

NOx SCG 4–5–1  0.9894  2.318  2.35  0.9812  2.998  2.47  
LM 4–11–1  0.9919  2.459  0.89  0.9849  2.685  1.69  
RP 4–7–1  0.9689  2.999  1.89  0.9765  2.798  1.99  
BFGS 4–8–1  0.9789  2.267  2.98  0.9661  3.128  3.28 

SMOKE SCG 4–5–1  0.9802  0.489  2.08  0.976  0.512  2.99  
LM 4–10–1  0.9758  0.512  1.89  0.990  0.489  2.84  
RP 4–11–1  0.9874  0.477  0.99  0.985  0.389  1.23  
BFGS 4–11–1  0.9992  0.189  0.65  0.993  0.333  0.98  

Table 8 
Summary of R, RMSE, and MAPE for BTE, BSEC, CO, CO2, HC, NOx and Smoke using different training algorithms.  

Output 
Parameters 

Training algoritham No of nureons in hidden 
layers 

R (Pearson Product moment 
correlation) 

RMSE (Root Mean squared 
Error) 

MAPE (Mean Absoulte 
percentage Error) 

BTE SCG  11  0.9965  0.405 1.15% 
BSEC SCG  11  0.989  0.026 0.87% 
CO LM 

(LevenbergeMarquardt)  
7  0.9784  0.0206 3.17% 

CO2 LM 
(LevenbergeMarquardt)  

7  0.955  0.0158 2.60% 

HC RP  11  0.9076  0.0195 4.26% 
Nox LM 

(LevenbergeMarquardt)  
11  0.9849  2.685 1.69% 

Smoke BFGS  11  0.993  0.333 0.98%  
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Appendix 1 

(a) Uncertainty calculation of performance parameter (BTE) 
Let ’P’ is the projected measurement, and A1, A2, … An are the independent parameters of ’P’. Now, the error of the ’P’ is denoted by 

P = f (A1,A2,…An) (A1) 

The uncertainty of ’P’ is estimated by 

ΔP =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

∂P
∂A1

.ΔA1

)2

+

(
∂P
∂A2

.ΔA2

)2

+ ….+

(
∂P
∂An

.ΔAn

)2
√

(A2) 

The uncertainty of BTE was calculated as follows: 

ΔBTE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

∂BTE
∂BP

.ΔBP
)2

+

(
∂BTE
∂FC

.ΔFC
)2

+

(
∂BTE

∂CV
.ΔCV

)2
√

(A3) 

Sample calculation 

BTE = f (TFC,BP) (A4)  

∂BTE
∂BP

=
3600 ∗ 100

0.246 ∗ 44120
= 33.17  

∂BTE
∂TFC

=
0.97 ∗ 3600 ∗ 100
(0.246)2

∗ 44.12
= 131.8  

ΔBTE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

∂BTE
∂TFC

.ΔTFC
)2

+

(
∂BTE
∂BP

.ΔBP
)2

√

(A5)  

ΔBTE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(33.17 ∗ 0.0077)2
+ (131.8 ∗ 0.00286)2

√

= 0.8  

ΔBTE = ±0.8 

(b) Uncertainty calculation of fuel property (density) 
Instrumental Uncertainty = ± 0.01 kg/m3. 
Calibration Uncertainty = ± 0.02 kg/m3 

Combined Uncertainty =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Instrumental Uncertainty2 + Calibration Uncertainty2
√

(A6)  

Combined Uncertainty =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
0.012 + 0.022

√
= 0.022  

Expanded Uncertainty = k ∗ Combined Uncertainty (A7) 

For a 95% confidence level, k value is about to 2. Hence, the expanded uncertainty of density is ±0.044. 
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