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Significance

Polyploid organisms abound, 
but long-term polyploid 
establishment is much rarer 
and likely not random. Hence, 
polyploidy is considered either 
an evolutionary dead end or a 
force helping organisms survive 
environmental changes and 
stress. How and why polyploids, 
especially autopolyploids, might 
outcompete nonpolyploids 
during times of environmental 
upheaval is unclear. On a longer 
timescale, whole-genome 
duplications may increase 
genetic robustness and variation, 
but their benefits on the short 
term are harder to explain. We 
show that duplicating genomes 
and their encoded gene 
regulatory networks increase 
signal output variation, leading 
to niche expansion and 
increased potential for surviving 
environmental turmoil. These 
findings highlight how polyploidy 
might help organisms adapt to 
changing conditions and survive 
disruption but might be 
maladaptive under stable 
conditions.
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The importance of whole-genome duplication (WGD) for evolution is controversial. 
Whereas some view WGD mainly as detrimental and an evolutionary dead end, there 
is growing evidence that polyploidization can help overcome environmental change, 
stressful conditions, or periods of extinction. However, despite much research, the mech-
anistic underpinnings of why and how polyploids might be able to outcompete or 
outlive nonpolyploids at times of environmental upheaval remain elusive, especially for 
autopolyploids, in which heterosis effects are limited. On the longer term, WGD might 
increase both mutational and environmental robustness due to redundancy and increased 
genetic variation, but on the short—or even immediate—term, selective advantages of 
WGDs are harder to explain. Here, by duplicating artificially generated Gene Regulatory 
Networks (GRNs), we show that duplicated GRNs—and thus duplicated genomes—
show higher signal output variation than nonduplicated GRNs. This increased varia-
tion leads to niche expansion and can provide polyploid populations with substantial 
advantages to survive environmental turmoil. In contrast, under stable environments, 
GRNs might be maladaptive to changes, a phenomenon that is exacerbated in duplicated 
GRNs. We believe that these results provide insights into how genome duplication and 
(auto)polyploidy might help organisms to adapt quickly to novel conditions and to 
survive ecological uproar or even cataclysmic events.

whole-genome duplication | polyploidy | gene regulatory networks | environmental turmoil |  
cataclysmic events

Whole-genome duplication (WGD) leading to polyploidy is a common phenomenon 
that has been studied for over 100 y, especially in flowering plants (1). Because of the 
well-known detrimental effects arising from genome doubling, most WGD events are not 
successful. Genomic instability, mitotic and meiotic abnormalities, and minority cytotype 
exclusion are all expected to quickly remove new polyploids from the population (2–4). 
Nevertheless, there are numerous polyploid organisms around us. Furthermore, even those 
organisms that are currently considered “functional” diploids usually bear signatures of a 
polyploid ancestry (5, 6). Several of these ancestral polyploidy events can be traced back 
to the origin and diversification of major phylogenetic lineages, including vertebrates, 
fishes, and flowering plants, and within flowering plants, core eudicots, monocots, orchids, 
grasses, composites, and legumes (6–8).

This phylogenetic signal of polyploidy success suggests an important role for WGD 
in promoting phenotypic diversity, with a subsequent facilitating role in speciation  
(9–11). Speciation typically occurs under restricted conditions where certain genotypes 
can exploit novel ecological opportunities under the presence of mating barriers with 
others (12). More importantly, polyploidization is often associated with the expression 
of new, often exaggerated, phenotypes that have the potential to promote niche expansion 
and a subsequent radiation in novel environments. Doubling the amount of DNA does 
for instance necessitate larger cell nuclei and cell size and has already major consequences 
on organismal developmental and physiological responses (13, 14). Size-independent 
phenotypic changes have been documented on stress physiology and other traits that 
provide advantages under extreme environments (15, 16). It has been suggested that such 
potential niche expansion advantages in novel environments might be responsible for 
phylogenetic records showing a rise of polyploids at certain epoch boundaries, such as 
for instance the K-Pg boundary, a geological period characterized by major episodes of 
global climatic change and mass extinction (6, 17–22), or around recent glaciation max-
ima (23). Studies in yeast have shown that polyploidy can accelerate evolutionary adap-
tation to challenging environments because WGD induced regulatory redundancy 
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followed by divergence, allowing a wider range of phenotypic 
responses to environmental stresses (24, 25).

The increasing numbers of genes that diversify in function due 
to a relaxed functional constraint on one of both copies [i.e., sub- 
or neofunctionalization (26)] are likely not the sole explanation 
of WGD’s evolutionary success under stress. Doubling of gene 
regulatory networks (GRNs) may equally increase the frequency 
of beneficial mutations (24) and therefore enlarge the genetic and 
phenotypic variation for selection to act on. In this respect, WGD 
can be seen as a complex super mutation of/within the genome. 
The increased genetic variation and the buffering effect of their 
duplicated genes have led to an increased recognition of the adap-
tive potential of polyploidy (6, 27, 28).

Recent work by some of us based on a computational frame-
work aimed at mimicking biological evolution (29, 30) suggested 
that the so-called digital organisms (DOs) with an unduplicated 
genome performed better—as in, adapted faster—than DOs with 
a duplicated genome in stable environments, while the opposite 
was true for unstable environments (31). Somewhat similar obser-
vations were made with populations of the so-called “virtual cells” 
(32, 33). These insights were generated by the implementation of 
WGD as a series of random mutations of large—adaptive or mal-
adaptive—effect. GRNs shape the mechanistic pathway between 
genotype and phenotype. We build on the observation that dupli-
cated GRNs seem to have a magnified impact (31) and hypothe-
size that the phenotypic variance generated by such networks 
exceeds the one of the ancestral simpler networks. The eventual 
propagation of information through (artificial) networks and thus 
the eventual distribution of output signals are uncertain. Signal 
propagation across a network can be considered a sum of different 
node values. The eventual variance of the distribution of output 
signals in such systems with a double number of nodes will then 
be the sum of the variances of the distribution of output signals 
across all nodes and their (doubled) covariance. Hence, increasing 
the number of nodes, and given covariances not being strongly 
negative, variance of the distribution of output signals of the pop-
ulation of doubled networks should always increase. To what 
extent the duplicated structure of the network results in a different 
signal propagation relative to the nonduplicated version, or to 
networks with the same number of nodes but with random struc-
ture, remains understudied. Few studies thus far considered the 
duplication of entire GRNs, both in silico or in vivo and previous 
research on the effect of network duplication focused almost exclu-
sively on the rewiring of the network after (gene and genome) 
duplication or on processes buffering the “immediate” effects of 
duplication (34–42).

The rewiring of networks, (re)diploidization, and fractionation 
(gene loss and genomic rearrangements) have important conse-
quences for adaptation at the longer term as they generate new 
functions and phenotypes. Immediate consequences of WGD on 
evolvability are also expected from the doubling of both genes and 
their connections within the GRN. Because this obvious route for 
polyploid evolutionary success has not been explored, we use 
extensive simulations to test how the duplication of artificial ances-
tral (further also referred to as “simple”) GRNs (aGRNs) of dif-
ferent sizes and shapes impacts the standing phenotypic variation 
for selection to act on. We generated aGRNs that represent 
scale-free genetic networks with general output functions that 
translate the aGRN to a gene product that is considered the rele-
vant phenotypic trait of interest under environmental change. We 
demonstrate that WGD increases phenotypic variation more than 
can be expected from doubling the number of genes alone. 
Importantly, this increased variation results from a nonrandom 
expansion of the phenotypic space by the proliferation of trait 

values along the same direction as the ancestral state. WGD there-
fore “magnifies” or “exaggerates” the phenotypic profile of the 
simple networks. Finally, by explicitly linking phenotype to fitness, 
we show these amplified phenotypes to be only adaptive during 
sudden environmental changes or periods of rapid extinction. 
WGD does impose a direct rescuing mechanism by enlarging the 
phenotypic space for selection to act on during episodes of strong 
environmental turmoil.

Results

Previous simulation studies showed that DOs with one genome 
copy generally adapted faster than DOs with a duplicated genome 
in relatively stable environments, but not in unstable environ-
ments (31). Furthermore, if DOs with duplicated genomes did 
adapt to stable(r) environments, they did so with a restricted num-
ber of mutations, compared to DOs with one genome copy. By 
contrast, if DOs with single-copy genomes adapted to more dras-
tically changed environments, they needed more mutations to 
adapt than the DOs with duplicated genomes. From this obser-
vation, i.e., fewer mutations being allowed and fewer mutations 
with a higher impact in duplicated genomes (and their encoded 
GRNs) (31), we assumed that changes in duplicated GRNs, either 
through mutations or sensed input cues changing node “values”, 
have an enhanced impact. Therefore, here, we tested different ways 
to evaluate the dynamics of signals sent through the networks and 
how they translate in output generated by the nonduplicated and 
duplicated networks. Different signals sent through the network 
mimic different environmental cues, such as, for instance, differ-
ences in temperature, where greater differences in values represent 
greater environmental turmoil (Methods).

The Increased Phenotypic Variance of Network Duplication. 
Examples of “simple” and “duplicated” aGRNs can be found 
in Figs.  1 and 2 (Methods). For information on how these are 
constructed and used in the current study, we refer to Methods 
and SI Appendix.

Fig. 3A shows a PTA (Methods) of a population of simple (10 
nodes) and duplicated networks in a single environment. It pro-
vides an example of the increase in the phenotypic variation of 
the duplicated population compared to the simple (ancestral) ones. 
Although the phenotypic effect of WGD depends on the network’s 
topology (i.e., the genotype), the average phenotypic value of the 
duplicated networks is on average more extreme than that of the 
simple networks. It is noteworthy to mention that the phenotypic 
variance of duplicated networks is on average significantly larger 
than that of simple networks with the same number of nodes, but 
not having the typical duplicated network structure (Fig. 3B, com-
paring, for instance, the mean variances of the output nodes from 
the 20-node duplicated networks with those of simple 40-node 
networks (red arrows) (SI Appendix, Fig. S3.2). Similarly, the aver-
age phenotypic variance σ as measured by multiplying variance 
of both (mean) output node values of populations (1,000) of 
simple networks of 10 nodes and their duplicated networks is 
more than four times higher for duplicated (σ = 0.176) compared 
to single networks (σ = 0.041; Fig. 3C). For each pair of simulated 
simple-duplicated networks, the phenotypic vector length 
increases by about 30% (average vector length for single networks: 
0.77 ± 0.31; for duplicated networks: 1.00 ± 0.30). Furthermore, 
this increase in phenotypic value (trait) is in the same direction as 
the phenotype of the single network. The relative angle between 
both vector angles is 0° ± 5° (Fig. 3D). For instance, if we consider 
gene expression as a trait, when gene expression is at a certain 
“high level” in a simple network, gene expression will generally 
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be further increased in the duplicated network. The same is true 
for repression of gene expression: In the duplicated network, gene 
repression will be higher/stronger. Of course, there are exceptions 
to the rule, indicated by vectors that point in contradictory direc-
tions, such as vectors in the lower left quadrant that point upward 
rather than downward (Fig. 3A). This pattern holds true for net-
works of all sizes and initialization conditions (SI Appendix, S2 
and S3), but the dispersion of the relative angles slightly increases 
in larger networks. Genome doubling thus affects the phenotypic 
trait in the same “direction” as in the nonduplicated “ancestral” 
network, in a multiplicative manner, but the directionality, and 
thus, predictability of the trait change decreases when networks 
increase in size. The duplication of the particular structure of a 
genetic network, rather than the sole increase in nodes, therefore 
underlies the observed pattern of phenotypic (or niche) expansion. 
Thus, WGD seems to systematically exaggerate the obtained phe-
notypic value of the single network rather than driving it into a 
random direction.

Selection along Environmental Gradients. The relative fitness 
between the simple and duplicated networks, as for instance 
expressed in differential survival or reproduction, is higher 
for phenotypes generated by simple networks in the reference 
environment, and when deviations between the new and reference 
environment are small. In contrast, when environmental change 
is large(r), the fitness of the duplicated networks exceeds that of 
the simple networks (Fig. 4 A and C). By comparing differential 
fitness between single and duplicated networks, (wduplicated – 
wsingle)/wsingle, it becomes obvious that small mismatches between 
the environment and phenotype impose a strong selection against 
the duplicated genomes (Fig.  4 B and D). With increasing 
environmental change, the fitness of the duplicated networks 
exceeds that of the simple networks, indicating that they will 
be favored compared to the nonduplicated networks. Fitness 
differences decrease with an increased number of nodes in the 
single network. When environmental change is too large, fitness 
differences equalize at zero since none of the networks can persist. 
This pattern is not qualitatively affected by the number of nodes 
in the single network.

Discussion

The longer-term consequences of WGDs have been discussed at 
large. WGDs increase both mutational and environmental robust-
ness due to redundancy and increased genetic variation (6, 14–16, 
27, 28). Many studies have reported on the co-option of extra 
duplicates specifically retained following WGD in different 

biological processes or pathways, increasing biological complexity 
or creating biological novelty (43–46). However, losing and retain-
ing (a selection of ) genes, the rewiring of gene interactions, and/
or the functional divergence of genes takes time, and selective 
advantages of WGDs on the short—or even immediate—term 
often remain elusive. We have previously wondered about the 
“conundrum” between the many examples of recurrent polyploidy 
and the existence of many polyploids of recent origin, which seem 
to contrast with the evidence of relatively few polyploidy events 
that have been established on the long term, certainly within the 
same evolutionary lineage (6, 47, 48). The long-term fixation of 
polyploidy does not seem to occur randomly in space and time. 
One notable example is the biased distribution of “survived” 
WGD events across independent plant lineages at the Cretaceous–
Paleogene or K-Pg boundary, about 66 Mya (22). Other “waves” 
of WGDs may correlate with periods of global climatic change 
during the Paleocene–Eocene, ca. 56 to 54 Mya (18), or the last 
glaciations (23). The possible correlation between the “establish-
ment” of WGDs at times of environmental upheaval is interesting, 
but, although some interesting hypotheses have been put forward 
(49, 50), remains to be explained. The fact that polyploids can 
survive drastically changing conditions or cataclysmic impacts 
while their diploid progenitors cannot suggests a short-term, per-
haps even immediate, evolutionary advantage for polyploids.

Some of the immediate consequences of polyploidy have been 
well described (13, 14, 27). One of the most consistent effects of 
WGD is an increase in cell size, but physiological effects have also 
been often observed. For instance, first-generation autotetraploids 
of Arabidopsis thaliana instantaneously enhanced their salt tolerance 
when compared to their diploid ancestors (51). Neo-autotetraploid 
Arabidopsis lines were shown to experience a tradeoff, demonstrat-
ing lower fitness compared to diploid progenitors under nonsaline 
conditions, but higher fitness in response to saline challenge. The 
authors proposed that in conditions of salinity stress, the autopoly-
ploid lineages would benefit from a fitness advantage that could 
contribute to their establishment and persistence. In turn, auto-
tetraploid Arabidopsis had been shown to be also more drought 
tolerant (52). Tetraploid rice (Oryza sativa) and citrange (Citrus 
sinensis L. Osb. × Poncirus trifoliata L. Raf.) too have an increased 
tolerance to salt and drought stress because of WGD, which affects 
the expression of genes involved in stress and phytohormone 
response pathways (53, 54). Similarly, tetraploid rootstock-grafted 
watermelon (Citrullus lanatus) plants are more tolerant to salt stress 
than are diploid plants (55). Although such physiological and cel-
lular responses to stress have thus been frequently documented for 
polyploids (16), the exact molecular processes underlying these 
responses remain obscure (56). Both the “gigas” effect shown by 

Fig. 1. Two examples of an aGRN of 10 nodes generated by the preferential attachment algorithm. All nodes represent regulatory genes or proteins, except 
nodes 8 and 9 in both networks, which are output nodes. Nodes 5 and 6 can act as input nodes since all edges are outgoing. Weight values are also indicated. 
Positive weight values represent induction, while negative weight values indicate repression (as for example in gene expression). The topology of a specific aGRN 
is unique and can be considered the genotype, while the output nodes or node values define the phenotype. See text for details.
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polyploids, as well as observations in shifts in photosynthetic rates 
or stress tolerance, are in line with our findings when considering 
polyploidy at the genomic and GRN level. The established extreme 
phenotypes in nature are merely the result from selection on the 
expanded phenotypic variation following WGD, incidentally 
improving fitness under novel environmental conditions (57), 
rather than the outcome from any directional and deterministic 

trait change in response to environmental change [which may 
increase polyploidization rates by itself (58)]. As shown in Fig. 3, 
simply considering the particular structure of duplicated networks, 
these networks show greater variation in trait values, solely likely 
being able to explain observations such as increased drought and 
salt tolerance. In an elegant simulation experiment in yeast, van 
Hoek and Hogeweg (59) showed that WGD can lead to increased 

Fig. 2. Example of a simple or ancestral (Left) and duplicated (Right) aGRN.
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fitness under conditions that require elevated fluxes for certain 
pathways by increasing the absolute dosage of all the genes in a 
pathway.

Direct comparison of our results with experimental data on 
autotetraploid transcriptional regulation is not straightforward. 
First, experimental data consist of transcript/protein or metabolite 
numbers relative to transcriptome size, cell number, or dry weight, 
whereas our output represents up- or downregulation compared 
to the population mean. Second, as with all models, our model is 
a crude simplification of reality, in which full dosage compensation 
is assumed, while dosage compensation in real GRNs is not well 
understood. There is some evidence that real biological networks 
have built-in structural mechanisms to deal with dosage shifts 
(60), but here again, the variation between cells and genotypes 
will be considerable. Finally, experimental studies on the effects 
of genome duplication on transcription are rare, especially those 
focusing on the immediate effects of autopolyploidy. WGD 
increases the transcriptome size, but the degree of change depends 
on the genotype, and dosage changes of individual genes are var-
iable (61). Gene expression differences normalized with transcrip-
tome size and cell number are limited, and the exact quantity 
depends on the genotype. Even different Arabidopsis ecotypes (thus 
with a slightly different genetic makeup) have been shown to have 
significantly different transcriptome responses for many genes in 
newly synthesized tetraploids (60). Thus, this study supports the 
notion that the response to polyploidy is (highly) variable and 

depends on the genomic composition and indirectly corroborates 
our findings that even small changes in simple GRN networks 
can lead to quite different responses in their duplicated counter-
parts (Fig. 3). It is also interesting to note that gene expression 
alterations in the autotetraploids used (62) were developmentally 
stage specific, implicating that certain GRNs were active or inac-
tive during different times or conditions, as expected. Gene expres-
sion alterations have been associated with trait changes that might 
be adaptive and therefore polyploidy might confer an immediate 
advantage, depending on the environmental conditions and the 
GRNs active (and useful) at a certain moment in time.

In stable, nonchanging environments, polyploidy will often be 
disadvantageous, as shown by our simulations, but also observed 
in vivo. For instance, in Heuchera cylindrica, an herbaceous peren-
nial plant, increased nutrient requirements following polyploidy 
constrain the ability of new polyploids to establish in the 
nutrient-poor habitats the diploid progenitors thrive in ref. 63. 
Similar observations were made for the autopolyploid complex 
Dianthus broteri, where, although higher ploidies have developed 
specific photochemical processes to survive in extremely warm 
conditions, the reduced performance of higher cytotypes renders 
them less competitive in the “normal” (nonstressed) environment 
(64). Differential fitness is the first and foremost criterion under-
lying adaptive dynamics theory (65). Our simulation results suggest 
that duplicated networks—or their hosts—will be able to coexist 
to eventually replace their simple progenitors only under 

Fig. 3. PTA (Methods) comparing a population of single versus its duplicated networks. (A) The value of one output node is plotted against the value of the 
second output node for simple (blue dots) and duplicated (orange) networks for a simple GRN of 10 nodes. Thinning has been applied and from the 1,000,000 
values only a fraction is shown, to facilitate interpretation. (B) The variance for simple and duplicated networks for networks of 10, 20, 40, and 80 nodes (400 
networks consisting of 10K single/double networks per size category). Variance of the output is increasing with node additions, but duplicated genomes always 
have higher variance compared to their unduplicated counterparts. Red arrows denote the difference in variance between duplicated networks and random 
networks with an equal number of nodes but not having the typical duplicated topology (structure doubling versus node doubling) (C) Cumulative density 
function of the phenotypic variance σ as measured by multiplying variance of both (mean) output node values in the 10K simulated simple GRNs of 10 nodes 
and their duplicated counterparts. (D) Angular dispersion of the relative angles between the single and doubled networks for 10K simulations of simple GRNs 
of 10 nodes and their duplicated counterparts.
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substantial environmental change (Fig. 4), for instance, when they 
end up in contrasting environments or when the environment is 
quickly changing. Developmental stochastic noise increases per-
sistence in moderately fluctuating environments (66, 67), but 
exaggerated phenotypic changes are essential to persist when 
changes of the adaptive landscape occur from major disturbances. 
During such events, any mutation must, by necessity, shift the 
value toward that new fitness peak if they are to increase fitness 
(Fig. 5). Or, in other words, when the original adaptive peak is 
sinking, overshooting is necessary to reach the new rising adaptive 
peak under discontinuous and/or fast environmental change 
(Fig. 5).

We need to notice that in contrast to our approach here, poly-
ploids are continuously but in low frequencies produced by their 
nonduplicated ancestors. Polyploids emerge from meiotic failures 
that lead to unreduced gametes, which are documented to occur in 
low frequencies, i.e., 0.1 to 2% in vascular plants (68). This implies 
that every 1/1,000 to 2/100 offspring (seeds) will experience this 
potential niche expansion. This number probably increases during 
times of environmental stress (16, 58). Given high fecundity in most 
(WGD) plants, our assumption of a one-to-one doubling event is 
thus not too far from reality. This implies that any potential for 
establishment will depend on their fitness advantage compared to 
their ancestors and the level of standing genetic variation of the 
ancestor population. Since we show polyploids to have “exaggerated” 
traits of their ancestors, fitness advantages are to be expected when 
rapid and drastic environmental change is already in line with earlier 
ambient selection. For instance, when ancestor populations evolved 
under continuous warming, extreme heat waves will promote poly-
ploid invasion. If such a period of warming would be followed by 
extreme cold, fitness advantages would disappear because the 

extreme phenotype would then exaggerate evolved maladaptations. 
On the other hand, we do observe—albeit much rarer—cases where 
the orientation of vectors in trait-space (Fig. 3 A and D), describing 
the relative contributions of the output traits to divergence between 
simple and duplicated networks, are almost opposite. In such cases, 
even when the fitness landscape changes more drastically, causing 
niche shifts rather than niche expansion, polyploids might be the 
“hopeful monsters” being able to adapt, where their diploid progen-
itors go extinct (Fig. 5). As the overall observed directionality in trait 
expression after doubling decreases with increasing network size 
(SI Appendix), we can expect WGD to provide more fuel for selec-
tion in organisms with more complex genomes under severe, but 
unpredictable, environmental changes. This way, WGD or poly-
ploidy might even explain large “jumps” in evolution, or the so-called 
saltational evolution (69). We here deliberately use a narrative of a 
single tangible trait (phenotype) responding to a unidirectional envi-
ronmental change but would like to emphasize that our model is 
equally valid for more complex multifactorial environmental changes 
that provoke selection on a restricted set of genes. Evidently, when 
multiple genes interact in more complex networks, trade-offs and 
pleiotropic effects might eventually provoke maladaptive dynamics 
under such conditions and lead to failure of establishment because 
optimal phenotype-environment matching cannot be reached (70).

We thus show that at least in theory, immediate consequences 
of polyploidy can be significant, but it remains to be further tested 
whether they can indeed explain the preferential survival of poly-
ploids over diploids during periods of sudden environmental 
change or times of extinction, as previously suggested (6, 48, 71). 
Reconstructing what occurred tens of millions of years ago, such 
as during the K/Pg extinction event, remains extremely challeng-
ing. Nevertheless, genomes of extant organisms might hold some 

Fig. 4. Mean fitness w of simple and duplicated networks relative to the fitness of the population of simple networks in the reference environment, as a function 
of different input values, assuming a Gaussian fitness function (Eq. 3) (A) and a linear fitness function (Eq. 2) (B) Differential fitness as a function of different input 
variables that represent environmental change with fitness modelled by a Gaussian (C) and linear function (D) for networks of different size. Note that we only 
report relative w  for input values leading to non-zero values for the single network.

http://www.pnas.org/lookup/doi/10.1073/pnas.2307289120#supplementary-materials
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clues. For instance, based on the analysis of 25 plant genomes, Yu 
et al. (20) showed that genes functioning at low temperature and 
in darkness have been subsequently selected for retention follow-
ing their duplication (through WGD) at around the K/Pg bound-
ary. Immediately after the Chicxulub asteroid impact, global 
cooling and darkness have been shown to be the two main stresses 
(72). One can imagine that increased expression of genes func-
tioning in shade avoidance and/or cold-responsive pathways, 
thereby enhancing the perception of light signals and/or increasing 
cold stress tolerance, might have increased the chance of survival 
directly after the cataclysmic events responsible for the K/Pg 
extinction. Continued selection on such highly expressed genes 
might then explain their retention on the longer term.

Evolution experiments with real biological organisms might be 
another means to get further insights into the mechanistic under-
pinnings explaining why duplicated GRNs might confer a selec-
tive advantage for polyploids during stressful times. By “replaying 
the duplication tape of life”, fitness of nonpolyploid and polyploid 
species can be evaluated under normal and stressful conditions 
(24, 73–76). Transcriptomes can be sequenced, and phenotypic 
and physiological responses measured and linked to the duplica-
tion of genomes and GRNs. Finally, a more explicit eco-evolutionary 
modeling approach building on the work presented here but also 
considering the history of selection, multidimensionality, magni-
tude, frequency, and direction of environmental change is needed. 
This too remains the topic of future work.

Methods

Defining and Initializing aGRNs. In the current study, we consider aGRNs, 
mimicking GRNs in the traditional sense, i.e., a set of genes or proteins that 
interact with each other to define and control a specific function (42, 77–80). For 

instance, such networks can transduce signals from environmental cues into a 
proper phenotypic behavior that allows an organism to respond to environmental 
changes. In our aGRNS, we discriminate between “regulatory” genes or proteins 
(like transcription factors, TFs), regulating the activity of other genes or proteins, 
and the so-called “output” genes or proteins, which produce an output, such as 
a structural protein or a metabolite. We also consider the so-called “input” genes 
or proteins, which can “sense” the environment and which can receive an input 
value. All these different genes or proteins form the nodes of the network, while 
edges between nodes represent their interactions. Furthermore, the following 
rules apply: 1) networks have a fixed number of nodes and are built by a prefer-
ential attachment algorithm and thus have properties that are close to scale-free 
networks, and 2) all edges are directed and have weights to mimic the strength 
of regulation (interaction). For instance, a weight can be considered the strength 
with which a regulator binds to its target, or alternatively, as the strength with 
which it induces—or represses—expression of its target. It should be mentioned 
that all “simple” or “single” (nonduplicated, ancestral) networks have two output 
nodes (while the duplicated network has four output nodes). As a result, for better 
interpretation of the outcomes, plots are two-dimensional (2D) (see below).

Although there is still debate as to what extent biological networks are truly 
“scale-free” (81), there are reasons to believe that many biological networks at 
least have certain features similar to scale-free networks, such as a high diversity 
of node degrees and absence of nodes in the network that could be used to 
characterize the rest of the nodes (82). Therefore, here, we consider directed, 
weighted, scale-free networks as our initial networks. To generate these directed 
scale-free networks, we used the “Preferential Attachment” algorithm (83–85). 
Using this algorithm, nodes have a higher chance to connect with nodes with a 
higher degree (more connections) compared to other nodes (“rich get richer”) 
(85). Another significant characteristic of real biological GRNs is the high num-
ber of feed-forward loops (FFL; A regulates B, B regulates C, and A regulates C) 
(86, 87). To enrich our aGRNs with FFLs, we used the algorithm of Herrera and 
Zufiria (88). By using this algorithm, the clustering coefficient of the network 
increases which in turn causes an increase in the number of triadic motifs in the 
network. Then, by controlling and changing the direction of edges, we can easily 

Fig. 5. Three-dimensional representation of fitness landscapes in which hills, corresponding to local adaptive peaks, are surrounded by valleys or depressions, 
corresponding to regions of the phenotype space where no survival is possible. Polyploidy may allow a wider and faster exploration of phenotypic space, 
ultimately conferring a potential adaptive advantage under challenging environmental conditions. Blue–green dots are individuals that can survive; red dots 
denote organisms that cannot survive. In a stable environment (Top Left), nonpolyploid organisms are expected to have reached their local adaptive peaks. WGD 
results in an expansion of the phenotypic space covered by the population, although some polyploid genotypes might survive, most polyploids cannot survive in 
this environment (Bottom-Left). Adaptive landscapes are readily distorted by environmental challenges, such as cataclysmic or extinction events (Right), resulting 
in shifts in the relative locations of their adaptive peaks. Under these conditions, although most diploids are expected to perish (Top Right), some polyploid 
organisms (which could be referred to as “hopeful monsters”), featured by wider accessible phenotype space (see text for details), have better chances to fall 
near the peak of a newly formed adaptive hill and thus to acquire the necessary evolutionary innovations to colonize novel niches (Bottom Right).
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raise the number of FFL motifs in the network. It should also be noted that for 
computational reasons, generated networks containing feedback loops (never-
ending loops; A regulates B, B regulates C, and C regulates A or self-regulation 
like A regulating A) are discarded. Besides, although such motifs do occur in real 
biological networks, they are rare (89).

As stated above, in our aGRNs, three different kinds of nodes are distin-
guished (Fig. 1). Nodes with zero in-degree and nonzero out-degree are referred 
to as input nodes. The number of input nodes is variable and depends on the 
preferential attachment algorithm, but usually lies between 20% and 40%. 
Nodes with nonzero in-degree and nonzero out-degree represent regulators, 
affecting other nodes (genes), such as TFs. Finally, nodes with nonzero in-degree 
and zero out-degree are output nodes defining the “phenotype” or “behavior”. 
To allow analyses of the phenotypic effects in an easily conceivable 2D space 
(see further), the number of output nodes is artificially set to 2. In practice, 
this means that for a network with n nodes, the network is built on n-2 nodes, 
and after the n-2 network has been built, the last two nodes are added. These 
two nodes cannot connect to others, but others can connect to them, again by 
applying the preferential attachment algorithm. Every edge has a weight cor-
responding to the “strength” of the regulatory interaction between genes. The 
weight of the edges is determined randomly by a standard Normal Distribution, 
generating values between −1 and 1, with positive values indicating stimu-
lation, and negative values repression. After initialization of the network, the 
weights of the edges are fixed. However, to model changes in the network after 
receiving different values of input nodes, i.e., mimicking environmental cues, 
we have defined an “activation level” for each node. Initially, activation levels 
of all nodes are set to 0, but during simulation, the input signal will determine 
the activation level of the input node(s), which will then be propagated through 
the network changing the activation level of each downstream node in function 
of all incoming edge weights and the activation level of all previous nodes (90). 
Concretely, this way, when the value/expression of one node/gene is increased 
(or decreased), this would lead to increased (or decreased) dosage of a regu-
lator, in turn being responsible for the increased (or decreased) production of 
its target, and so on.

Network Duplication. To mimic WGDs, we simply duplicate all nodes of the 
network. However, this means that, if a regulator A regulates nodes B and C, its 
duplicate A’ regulates the duplicated targets B’ and C’, but also the original targets 
B and C. In turn, the original regulator A also regulates all four targets, B, B’, C, and 
C’ (Fig. 2). The edge weights between corresponding nodes in the nonduplicated 
(A-B) and duplicated (A-B, A’-B’, A’-B, and A-B’) network remain unaltered. It 
should be noted that such operation mimics only part of the effects of a polyploidi-
zation event, i.e., the effects of genome doubling (autopolyploidy) and not those 
of genome merging (allopolyploidy). As a result, throughout the paper, we will 
only consider autopolyploidy, where the “own” genome gets duplicated, rather 
than allopolyploidy, where the duplicated genome is obtained from the merging 
of genomes of different species. Although there is still discussion on the ratio of 
autopolyploids versus allopolyploids in the polyploid realm, there is reason to 
believe that autopolyploids are much more frequent than previously thought 
(91). We are aware of the fact that in autopolyploids, unlike in allopolyploids, 
the duplicated genes might be seen more as different alleles of the same gene, 
rather than as different genes, but we feel that this will not have a major effect 
on our conclusions because even when considered only different alleles, it will 
affect certain traits (e.g., due to dosage effects) (13, 14, 16), and when there is 
no recombination, they can be considered separate genes.

Signal Propagation in the Network. One of the main purposes of our simu-
lations is to see how signals, such as environmental cues, propagate over sim-
ple (nonduplicated) versus duplicated networks, the hypothesis here being that, 
because of the specific structure and a denser wiring of duplicated networks 
(Fig. 2), greater parts of the network—and thus more genes—are affected, with 
consequently, greater variation in output values. As far as we know, this has not 
been studied in a biological context, and certainly not in the context of duplicated 
networks and polyploidy or genome duplication. Signal propagation functions 
in the network (see further) will determine the output values and thus the phe-
notype. We evaluated output changes by using constrained propagation using 
the hyperbolic tangent function (tanh) with the max value of “+1” and min value 
of “−1” (Eq. 1). This function is typically used to determine the activation level 
of nodes in neural networks (90, 92, 93). Similar “sigmoid” functions have also 

been used previously to study signal processing in complex regulatory gene 
networks (40, 94):

	
[1]Aa = tanh

(
∑

i∈Ng

Ai × Wi→a

)
,

where Aa is the activation level of node a , Wi→a is the weight of the edge from node 
i  to node a , and Ng is the list of nodes that are connected to node A.

Depending on the different input signals, different outputs will be reached. 
This constrained implementation mimics biological networks in that it considers 
minimal and maximum values for, for instance, an increase in gene expression 
(increase in gene expression is not unlimited). We additionally provide a sensi-
tivity analysis for an unconstrained linear propagation algorithm in SI Appendix, 
Text S1.

Environmental changes, such as for instance changes in temperature, are 
mimicked by changing the signal values of input nodes (input values are drawn 
from a uniform distribution between −1 and +1) and following their propaga-
tion over the network. Values from the two output nodes, o1, o2, are interpreted 
as a phenotype in a 2D trait space (hence the two output nodes). Since we have 
four output nodes for duplicated networks, like o1, o2, and o1’ and o2’, each 
output value is calculated as the average of the corresponding output nodes, 
e.g., (o1+o1’)/2. We thus consider a conservative but realistic full dosage com-
pensation of the gene expression after WGD (27). This representation allows us 
to quantify phenotypic changes by means of Phenotypic Trajectory Analysis, PTA 
(95, 96). In brief, this approach allows us to understand whether evolutionary 
divergence between pairs of populations, here the ancestral (single/simple) 
and duplicated networks, is parallel, convergent, divergent, or random (97). 
To this end, vectors o⃗ [o1, o2] are drawn from the “phenotype/trait value” (e.g., 
positions of the two output nodes in a 2D space, see Fig. 3A) of an ancestral 
simple network to the phenotype/trait value of its duplicated counterpart. 
Changes in the vector length demonstrate how much the eventual trait value 
(the phenotype produced by the duplicated genome) is changing compared 
to the initial value of the simple aGRN. The distribution of these differential 
vector lengths therefore identifies the strength of the phenotypic (and putative 
niche) shifts and thus the strength of the divergence due to genome doubling. 
The orientation of a vector in trait-space describes the relative contributions of 
the output traits to divergence between that pair of populations. Changes in 
angular dispersion between the ancestral and duplicated phenotype indicate 
whether phenotypic changes among all independent network doubling events 
occur in parallel for all doubling events (absolute angles in the trait space 
similar, hence showing directional or parallel evolution), in the same direction 
of the initial phenotypic position (relative angles between the ancestral and 
doubles genotypes are zero, showing niche expansion), or completely random 
(both absolute and relative angles randomly distributed across trait space). 
We calculated overall phenotypic variation at the population level (hence a 
population of 10K single versus doubled genomes generated by the same 
initialization) by calculating the variance of the mean of the two output nodes 
and by multiplying the variance of the two output values. aGRNs consisting 
of 10, 20, 40, 60, 80, and 100 nodes were generated and exposed to 10,000 
environmental conditions by drawing the input values (activation levels for 
the input nodes) from a uniform distribution between −1, and +1, as stated 
previously. We report these variances for 400 populations of 10K networks per 
category (e.g., number of nodes in the single network; Fig. 3B). We specifically 
test how doubling of simple scale-free networks of size n affects phenotypic 
variation relative to the variation generated by randomly selected scale-free 
networks with the same number of nodes (2n) but the same parameter dis-
tributions. Unless explicitly mentioned, we present data for ancestral (simple) 
networks consisting of 10 nodes and node/edge values initiated from the 
uniform distribution. We tested the robustness of our analysis by sensitivity 
analyses for the full range of node numbers (SI Appendix, Text S2) and network 
initialization from Gaussian N(0,1) and mixed uniform U[-1,1]-Gaussian N(0,1) 
distributions (SI Appendix, Text S3).

Linking Phenotypes to the Environment: Fitness. Besides studying theo-
retical phenotype-WGD mapping, we moved one step further and tested the 
hypothesis that duplicated genomes provide fitness benefits under larger envi-
ronmental changes. To this end, we simplified the 2D phenotype vector o⃗ [o1, o2] 

http://www.pnas.org/lookup/doi/10.1073/pnas.2307289120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2307289120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2307289120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2307289120#supplementary-materials


PNAS  2023  Vol. 120  No. 41  e2307289120� https://doi.org/10.1073/pnas.2307289120   9 of 10

toward its one-dimensional average value [ o = (o1 + o2)∕2 ] as it was shown to 
generate qualitatively similar insights (Pearson correlation r between 0.45 and 
0.52). We start from a population of simple networks that are well adapted to 
their environment and assume that the individual phenotypes are all centered 
around the fitness optimum. We simulated a genome doubling effect of all sim-
ple genetic networks and quantified the mean fitness w  of both the simple and 
duplicated populations in the reference environment and under environmental 
changes of different magnitudes.

For each size of simple networks (resp. 10, 20, 40, 60, 80, and 100 nodes), we 
constructed 10,000 simple and their duplicated networks as described above. All 
these 10K networks have different topologies and different edge weights. For all 
these simple and duplicated networks, we here provide insights from simulations 
with an input value of 0.01, creating a large compilation of networks with different 
output values centered around 0 (see above). This specific input value represents 
our “reference environment” and guarantees that the average phenotype of the 
population is close to the fitness optimum (0.01), when we assume that fitness 
w is inversely proportional to the difference between input and output value. To 
assess fitness in the reference environment and how it is affected by the underly-
ing fitness function, the performance of each network was calculated using both 
a negative linear and a Gaussian fitness function.

	
[2]

For the linear function, w =1− ||Ai−Ao
|| andw =0

when |Ai−Ao| > 1,

	

[3]while for the Gaussian function, w =
1

√
2�

e
−�Ai−A0�2

2 .

Networks with a phenotype (output Ao ) similar to the reference environment 
(input Ai ) will have the maximal fitness, and this value decreases to zero under 
large deviation from the reference environment. The mean fitness w  of the simple 
networks under this reference environment was set to the maximum of 1, to which 
all other measured mean fitness values were contrasted with.

Next, the populations of these simple and duplicated aGRNs were subjected 
to deviating environmental conditions as input Ai, our environmental change 
gradient, and w was again calculated according to the output phenotype Ao as in 
Eqs. 2 and 3. To this end, the input value Ai of one randomly chosen input node is 
changed gradually with ΔAi . If there is more than one input node, which is always 
the case for duplicated networks, the input of the other input nodes is kept at 
zero. Given the fitness values w ranging between 0 and 1 under all conditions, it 

could be considered a survival rate: Networks with an output equal to the input 
have a survival of 100%, whereas those differing a lot will approach a survival 
rate of zero, pending the used fitness function (Eqs. 2 and 3). The mean fitness 
over the 10K simple or duplicated networks (w) then represents the average 
population-level survival rate. Given the choice of the reference environment, w  
in the environment with input 0.01 is maximal for the simple networks and used 
as a baseline for the performance of doubled networks in this reference environ-
ment and for all simple and doubled networks in environments with a different 
input value, hence environmental change. We represent both the fitness relative 

to this baseline for networks of 10 nodes and the differential fitness, 
wdouble−wsimple

wsimple
 , 

for simulations of networks with different number of nodes.

Data, Materials, and Software Availability. Documentation and software to 
generate artificial scale-free GRNs and their duplicated versions simulating the 
result of WGD can be found at https://github.com/Mehrshad-Ebadi/SC-as-aGRNs 
(98). Examples of networks and their duplicated versions of different sizes can be 
found there as well. All other data are included in the article and/or SI Appendix.
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