Supplementary Data

Synergistic adsorption-photocatalytic remediation of methylene blue dye from textile

industry wastewater over NiFe LDH supported on tyre-ash derived activated carbon

Tshimangadzo S. Munonde^{1*}, Ntakadzeni Madima^{2*}, Rudzani Ratshiedana¹, Philiswa Nosizo Nomngongo³, Lethula E Mofokeng⁴, Ratshilumela S. Dima⁵

¹Institute for Nanotechnology and Water Sustainability, College of Science, Engineering, and Technology, University of South Africa, Florida Science Campus, Roodepoort, 1710, South Africa, ratshr@unisa.ac.za, munonts@unisa.ac.za

²Advanced Materials Division, Mintek, Private Bag X3015, Randburg, 2125; Gauteng Province, South Africa; ntakadzenim@mintek.co.za

³Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Doornfontein, 2028, South Africa, pnnomngongo@uj.ac.za

⁴Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa, mofokengexcellent@yahoo.com

⁵Next Generation Enterprises and Institution Cluster, Council for Scientific and Industrial Research, P.O. Box 395, Pretoria 0001, South Africa, sdima@csir.co.za

*Corresponding authors: munonts@unisa.ac.za, ntakadzenim@mintek.co.za; Tel: +27 65 825 3854.

Experimental results

Experiment	MC (mg)	DT (min)	Conc (mg/L)	pН	Degradation (%)	
1	5	10	10	3	19.64	
2	5	10	10	10	33.35	
3	5	10	50	3	14.85	
4	5	10	50	10	22.06	
5	5	50	10	3	28.25	
6	5	50	10	10	50.70	
7	5	50	50	3	22.72	
8	5	50	50	10	90.95	
9	50	10	10	3	59.66	
10	50	10	10	10	66.89	
11	50	10	50	3	37.40	
12	50	10	50	10	41.64	
13	50	50	10	3	51.23	
14	50	50	10	10	42.16	

Table S1 2⁴ central composite design experimental setup for optimization of parameters

15	50	50	50	3	38.21
16	50	50	50	10	75.19
17	-5.86	30	30	6.5	4.05
18	60.9	30	30	6.5	94.99
19	27.5	2.28	30	6.5	24.45
20	27.5	71.7	30	6.5	94.42
21	27.5	30	0.35	6.5	30.75
22	27.5	30	59.6	6.5	31.38
23	27.5	30	30	1.31	31.58
24	27.5	30	30	11.7	65.02
25 (C)	27.5	30	30	6.5	24.14
26 (C)	27.5	30	30	6.5	23.19

Table S2 Comparison of the performance of the NiFe LDH/AC with other materials in the degradation of MB $\,$

Photocatalysts	MB	Catalyst	Reaction	Degradation	Ref
	concentration	load	time	(%)	
	(ppm)	(mg)	(min)		
NiO/g-C ₃ N ₄	10	100	90	91.6	[1]
Mn ₃ O ₄ -γ-MnS	15	20	70	91.2	[2]
Cu _{0.5} Co _{0.5} WO ₄ /g-	10	100	120	93.4	[3]
C_3N_4					
MgAlTi-LDH/g-C ₃ N ₄	20	20	1120	95	[4]
NiFe-LDH/Cu ₂ O	6	50	240	93.0	[5]
MgCr-LDH	20	30	120	90.6	[6]
Co-Al LDH/GO	10	100	60	71.0	[7]
Bi ₅ O ₇ I/ NiFe-LDH	10	50	240	81.2	[8]
NiAl LDH/CuWO4	10	100	300	87.5	[9]
NiFe LDH/AC	30	30	30	94.2	This
					work

Fig. S1 Temperature optimization towards the photodegradation of MB using NiFe LDH/AC

Fig. S2 Electrochemical responses: (a), CV curves, (b) Current density, and (c) LSV transient photocurrent responses of AC, NiFe LDH, and NiFe LDH/AC nanocomposites

Fig. S3 (a) Re-usability study, (b) FTIR spectra, (c) XRD spectrum, of NiFe LDH/AC, before and after adsorption-photodegradation process

Fig S4 UPLC chromatograms for MB under (a) 0 min and (b) 30 min of light irradiation, and (c-d) depict mass spectra of 30 min MB degradation under light irradiation

References

- M.A. Ahmed, M.A. Ahmed, A.A. Mohamed, Fabrication of NiO/g-C₃N₄ Z-scheme heterojunction for enhanced photocatalytic degradation of methylene blue dye, Opt. Mater. (Amst). 151 (2024) 115339. https://doi.org/10.1016/j.optmat.2024.115339.
- [2] P.S. Nandisha, Sowbhagya, G. Vinay, One-step facile combustion synthesis of dualphased Mn₃O₄-γ-MnS nanocomposite for photodegradation of Methylene blue (MB) dye, Mater. Lett. 360 (2024) 135963. https://doi.org/10.1016/j.matlet.2024.135963.
- M. Kandasamy, V. Vasudevan, P. Thangavelu, B. Parasuraman, R. Boddula, R. Pothu,
 P. Shanmugam, K. Nadesan, Exploring prompt photocatalytic degradation of MB dye
 using Cu_{0.5}Co_{0.5}WO₄/g-C₃N₄ nanocomposite under visible light irradiation, Emergent
 Mater. 7 (2024) 987–998. https://doi.org/10.1007/s42247-024-00646-9.
- [4] Q. Chen, L. Wu, J. Wu, K. Ma, W. Ma, W. Wu, F. Guan, P. Li, D. Liu, X.J. Yang, 2D/2D heterojunction of MgAlTi-LDH/g-C₃N₄ with oxygen vacancy engineering for enhanced photocatalytic activities under natural sunlight, J. Environ. Chem. Eng. 12 (2024) 112806. https://doi.org/10.1016/j.jece.2024.112806.
- [5] Y. Wu, Y. Gong, J. Liu, T. Chen, Q. Liu, Y. Zhu, L. Niu, C. Li, X. Liu, C.Q. Sun, S. Xu, Constructing NiFe-LDH wrapped Cu₂O nanocube heterostructure photocatalysts for

enhanced photocatalytic dye degradation and CO₂ reduction via Z-scheme mechanism, J. Alloys Compd. 831 (2020) 154723. https://doi.org/10.1016/j.jallcom.2020.154723.

- [6] S. Nayak, K. Kumar Das, K. Parida, Indulgent of the physiochemical features of MgCr-LDH nanosheets towards photodegradation process of methylene blue, J. Colloid Interface Sci. 634 (2023) 121–137. https://doi.org/10.1016/j.jcis.2022.12.050.
- [7] M. Asif, M. Saeed, M. Zafar, U. e. S. Amjad, A. Razzaq, W. Young Kim, Development of Co-Al LDH/GO composite photocatalyst for enhanced degradation of textile pollutant under visible light irradiation, Results Phys. 42 (2022) 105997. https://doi.org/10.1016/j.rinp.2022.105997.
- [8] X. Han, S. Wang, H. Huang, Y. Zhang, Hydroxyl radicals and sulfate radicals synergistically boosting the photocatalytic and mineralization ability of 1D-2D Bi₅O₇I/NiFe-LDH heterojunction, Appl. Surf. Sci. 540 (2021) 148237. https://doi.org/10.1016/j.apsusc.2020.148237.
- [9] S. Megala, A. Silambarasan, S. Kanagesan, M. Selvaraj, P. Maadeswaran, R. Ramesh, M.M. Alam, M.A. Assiri, Interfacial coupling of CuWO₄ nanoparticles on NiAl LDH as a novel photoctalyst for dissolved organic dye degradation, J. Mol. Struct. 1252 (2022) 132149. https://doi.org/10.1016/j.molstruc.2021.132149.