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Significance

Assessing change in Southern 
Ocean ecosystems is challenging 
due to its remoteness. Large-scale 
datasets that allow comparison 
between present-day conditions 
and those prior to large-scale 
ecosystem disturbances caused by 
humans (e.g., fishing/whaling) are 
rare. We infer the contemporary 
offshore foraging distribution of a 
marine predator, southern right 
whales (n = 1,002), using a 
customized stable isotope-based 
assignment approach based on 
biogeochemical models of the 
Southern Ocean. We then 
compare the contemporary 
distributions during the late austral 
summer and autumn to whaling 
catch data representing historical 
distributions during the same 
seasons. We show remarkable 
consistency of mid-latitude 
distribution across four centuries 
but shifts in foraging grounds in 
the past 30 y, particularly in the 
high latitudes that are likely driven 
by climate-associated alterations in 
prey availability.
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Assessing environmental changes in Southern Ocean ecosystems is difficult due to its 
remoteness and data sparsity. Monitoring marine predators that respond rapidly to envi-
ronmental variation may enable us to track anthropogenic effects on ecosystems. Yet, 
many long-term datasets of marine predators are incomplete because they are spatially 
constrained and/or track ecosystems already modified by industrial fishing and whaling in 
the latter half of the 20th century. Here, we assess the contemporary offshore distribution 
of a wide-ranging marine predator, the southern right whale (SRW, Eubalaena australis), 
that forages on copepods and krill from ~30°S to the Antarctic ice edge (>60°S). We ana-
lyzed carbon and nitrogen isotope values of 1,002 skin samples from six genetically distinct 
SRW populations using a customized assignment approach that accounts for temporal 
and spatial variation in the Southern Ocean phytoplankton isoscape. Over the past three 
decades, SRWs increased their use of mid-latitude foraging grounds in the south Atlantic 
and southwest (SW) Indian oceans in the late austral summer and autumn and slightly 
increased their use of high-latitude (>60°S) foraging grounds in the SW Pacific, coinci-
dent with observed changes in prey distribution and abundance on a circumpolar scale. 
Comparing foraging assignments with whaling records since the 18th century showed 
remarkable stability in use of mid-latitude foraging areas. We attribute this consistency 
across four centuries to the physical stability of ocean fronts and resulting productivity 
in mid-latitude ecosystems of the Southern Ocean compared with polar regions that may 
be more influenced by recent climate change.

isotope ecology | isoscape | environmental change | Eubalaena australis | southern right whale

The Southern Ocean is one of the most data-sparse oceanic regions in the world (1) but 
has nonetheless been subject to massive ecosystem perturbations through industrial sealing, 
whaling (2), and fishing (3, 4). Ongoing environmental changes of anthropogenic origin, 
including climate change and the ozone hole, are altering physical and biological condi-
tions in this region (5). Specifically, rapid ocean warming and acidification are affecting 
the food web of maritime Antarctic and sub-Antarctic ecosystems from phytoplankton 
(6) to the keystone Antarctic krill [Euphausia superba (4, 7, 8)] and top predators (9).

As sentinels of the diverse and productive food webs on which they depend (10), large 
marine predators are often used to track direct and indirect anthropogenic impacts on 
ecosystems as they integrate information across the food chain and respond to environ-
mental change or disturbance (11). In recent decades, marine predator populations around 
the world have shown variation in migratory behavior, distribution, and life history phe-
nology in response to fluctuations in prey availability resulting from climate change (12–
17). Most of this research has focused on central place foragers that breed on land (e.g., 
seabirds and pinnipeds) due to the ease of capture and data collection (9, 10, 18, 19), 
while comparatively little is known about pelagic cetaceans that spend their entire lives at 
sea and generally range over larger distances (20, although see ref. 21). Moreover, while 
many of these studies span decades, they rarely extend to before the onset of the Industrial 
Revolution (e.g., ref. 18) and thus focus on ecosystems that have already been heavily 
impacted by humans.

Early whaling records make it possible to characterize the ecology of targeted species 
prior to large-scale ecosystem changes from industrial whaling and fishing (22–25). In 
particular, the American whaling fleet operating in the Southern Hemisphere from the 
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18th to the early 20th century kept detailed records of where and 
what species were observed and killed (e.g., ref. 20). Some of the 
longest commercial records are for southern right whales 
(SRWs, Eubalaena australis), a major consumer of krill and cope-
pods in the Southern Ocean that migrates between coastal winter 
breeding/nursery grounds and offshore foraging grounds used 
between spring and autumn (23). An estimated 150,000 SRWs 
were killed by whalers on a circumpolar scale during the 18th to 
mid-20th century (26) causing a decline in the global population 
to as few as 400 individuals before protection enabled the species 
to moderately recover in parts of its historical range (26, 27). 
When paired with an understanding of current distribution, whal-
ing records allow the study of a marine predator’s foraging range 
across several centuries.

Knowledge of the current distribution of marine predators such 
as the SRWs is hindered by our inability to track their wide-ranging 
movements at a population level and their variable use of different 
pelagic regions across their range (28, 29). Stable isotope analysis 
is an effective method to assess the foraging distribution of migra-
tory marine animals (30–32) by comparing carbon (δ13C) and 
nitrogen (δ15N) isotope values of their tissues with that of their 
prey or the baseline isotopic composition of phytoplankton at the 
base of pelagic food webs (30). This tool has been used extensively 
to study the ecology of baleen whales (e.g., refs. 17, 33, and 34) as 
the isotopic composition of skin biopsy samples collected from 
wintering grounds reflects that of recently visited foraging grounds 
(33). High-resolution spatial and temporal isoscapes (i.e., models 
of the distribution of stable isotopic composition) of primary pro-
ducer (phytoplankton) and primary consumer (zooplankton) iso-
tope values have recently become available across ocean basins (35, 
36), allowing us to make accurate geographic assignments for 
marine predators. This advance is important because the seasonal 
and annual variability of ocean conditions that influence the iso-
topic composition of both predators and their prey is not reflected 
in static isoscapes (30). Recent progress in the development of 
global biogeochemical ocean models further improves the appli-
cability of isotope assignment to identify foraging patterns of 
marine predators over large spatiotemporal scales (37).

Here, we use these advances to supplement the sparse infor-
mation available (29, 38, 39) on where many of the SRW pop-
ulations forage and assess potential distributional shifts since 
the whaling era. For example, long-term monitoring of the 
South American SRW population shows that reproductive out-
put and adult survival of SRWs on their breeding grounds in 
the southwest (SW) Atlantic correlate with climate oscillations 
that influence the distribution and abundance of their prey on 
their high-latitude summer foraging grounds (40–42). Such 
connections between variable environmental conditions and/
or prey availability with SRW recovery and fitness are lacking 
for most populations. Furthermore, the degree to which 
poor-quality foraging grounds could be responsible for the lack 
of recovery of some wintering ground populations [e.g., south-
east (SE) Australia (43)] cannot be assessed without identifying 
the foraging grounds used by each population.

Specifically, we address this knowledge gap through the use of 
a coupled oceanographic biogeochemical isoscape model that 
accounts for temporal and spatial variability in δ13C and δ15N in 
phytoplankton (37, 44) and a framework that customizes assign-
ment space using prior information on sampling location/date 
and migratory behavior of SRWs. This approach is used to esti-
mate the circumpolar foraging distributions of SRWs in the late 
austral summer and autumn through the comparison of δ13C and 
δ15N values of skin samples (n = 1,002) collected from six 

genetically distinct populations (45–47). We then investigate the 
temporal variability of SRW foraging distributions by comparing 
assignments 1) over three decades (1994 to 2020) using the model 
output and 2) over four centuries by comparing model outputs 
directly to whaling data from the late 18th to early 21st century 
(22, 23) matched to the seasonal window reflected in the skin 
isotope data. This provides an unprecedented perspective on shifts 
and stability in the foraging distribution of a Southern Ocean 
sentinel predator as populations simultaneously recover from 
exploitation and face rapid climate change.

Results

Foraging Ground Assignments. We compiled 1,002 SRW skin 
samples from seven different wintering grounds across six genetically 
distinct populations across the Southern Hemisphere spanning 
three decades (Fig. 1 and SI Appendix, Fig. S1); the New Zealand 
population is represented by two wintering grounds: New Zealand 
mainland and Auckland Islands (47). Skin δ13C and δ15N values 
ranged −26.0 to −16.3‰ and 4.6 to 15.0‰, respectively (Fig. 1 and 
SI Appendix, Tables S1 and S2). We split samples from Argentina 
into two groups based on the previously described bimodality in 
δ15N values (> or <10‰), a pattern that was only observed in SRWs 
sampled from this wintering ground (34). There were statistically 
significant differences in skin isotope values by decade (Kruskal–
Wallis statistics: δ13C χ2= 63.393, df = 2, P value = 1.715e-14, 
and δ15N χ2= 24.121, df = 2, P value = 5.782e-06) and wintering 
ground (Kruskal–Wallis statistics: δ13C χ2= 553.5, df = 7, P value 
< 2.2e-16, and δ15N χ2= 323.46, df = 7, P value < 2.2e-16) 
(SI Appendix, SI1 and Tables S1–S4). Post hoc Dunn’s test further 
indicated that many of these differences are linked to variation 
between the south Atlantic and Indo-Pacific wintering grounds 
(SI Appendix, Tables S3 and S4).

We mapped the assigned foraging probability area for each whale 
using skin δ13C and δ15N values and phytoplankton isoscapes from 
a data-constrained Model of Ocean Biogeochemistry and Isotopes 
[MOBI (37, 44)] in a bivariate normal probability function (48) 
(Materials and Methods). We used a threshold approach to represent 
the population-level core and general foraging areas using pixels with 
highest 50% and 25% probability, respectively (49, 50), per winter-
ing ground (Fig. 2A; larger maps of foraging ground assignments for 
each wintering ground are provided in SI Appendix, Figs. S2–S9). 
Isotopically assigned foraging areas were spread across the circum-
polar region. Except for the Auckland Islands, all populations had 
foraging grounds partially assigned to both mid (around 40°S) and 
high (>60°S) latitudes (Fig. 2A).

To assess interindividual variation in foraging distribution, we 
also generated summed individual-level maps by wintering ground 
that depict the percent of individuals whose general foraging areas 
were assigned to each grid cell (49). Individual-level summary 
maps of foraging grounds sometimes varied in comparison to maps 
generated at the population level (Fig. 2B). For example, a small 
proportion of individuals wintering in Argentina and the Auckland 
Islands was assigned to high-latitude waters, while most individ-
uals from these wintering grounds were assigned to mid-latitude 
foraging grounds.

Changes in Foraging Grounds at High Latitudes across Decades. 
Foraging grounds in the south Atlantic and SW Indian oceans 
used by SRWs from the Brazilian, South African, and SW 
Australian wintering grounds showed a marked shift from high 
to lower latitudes between the 1990s to 2010s (Fig. 3; distribution 
of data by decade shown in SI Appendix, Fig. S10). The modeled 
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general foraging areas encompassing waters south of 60°S declined 
by 13%, 25%, and 19%, respectively, for these three wintering 
grounds. By contrast, assignment to high-latitude foraging grounds 
increased in the SW Pacific Ocean by 25% for SE Australia and 
10% for New Zealand wintering grounds between the 2000s and 
the 2010s.

Stability in Foraging Grounds in Mid-latitudes across Centuries. 
Foraging ground assignments were compared to 2,614 whaling 
catch records during the late austral summer and autumn, the 
seasonal period inferred from δ13C and δ15N analyses of skin 
that accounts for the isotopic incorporation rate of this tissue 
(33). These data comprised 270 Soviet catches recorded between 
1961 and 1968 and 2,344 American catches recorded between 
1792 and 1912 (22, 23). Whaling records strongly overlapped 
with foraging grounds estimated by isotope assignments of 
samples collected over the last 30 y. Of these records, 2,488 were 
included in at least one potential foraging range (Fig. 4), with an 
average of 77% of catch records located within general foraging 
areas generated at the population level. Discrepancies between 
catch records and foraging ground assignments from the same 
seasons mostly occurred in the south Atlantic Ocean in latitudes 
>50°S. Comparisons at high latitudes to the 18th to 20th century 
American whaling were not possible as this fleet did not typically 
hunt >50°S due to notoriously bad weather (22). The late austral 
summer and autumn Soviet catch records from the 21st century 
in the south Atlantic Ocean overlapped with foraging grounds 
assigned to the South African wintering grounds but did not with 
those of the Argentinian and Brazilian wintering grounds (Fig. 4).

Discussion

We used an isoscape assignment approach to infer the foraging 
grounds of a marine predator on a circumpolar spatial scale and 
compare our findings across timescales from decades to centuries. 
Over the seasons reflected in skin (late austral summer and 
autumn), SRWs consistently used mid-latitude foraging grounds 
across four centuries, but there was a decline in the use of some 
high-latitude foraging grounds in recent decades, particularly in 

the south Atlantic Ocean. Our results highlight heterogeneous 
changes in SRW distribution, suggesting differences in the effects 
of whaling and climate change across the Southern Ocean. Here, 
we discuss potential drivers of SRW distribution over time and 
space, including the availability of their primary prey: krill at high 
latitudes and copepods at mid-latitudes (23).

In the high latitudes of the Southern Ocean, the distribution 
of baleen whales and other top predators is typically related to 
krill availability (e.g., refs. 20 and 51–53). Fluctuations in krill 
distribution and abundance through time are linked to climate-re-
lated shifts in the habitat of this keystone species 
(e.g., refs. 54 and 55). These spatiotemporal shifts in prey abun-
dance correlate with decadal changes in SRW foraging ground 
assignments. For example, the Atlantic sector (90°W to 10°W) is 
subject to faster warming than other regions of the Southern 
Ocean (56), and the krill stocks within this region have contracted 
in range and abundance in the past century (7, 57, 58) with 
implications for krill predators (59). This change coincides with 
a decrease in high-latitude foraging ground assignments for SRWs 
that winter in South Africa and Brazil (Fig. 3). In contrast, signif-
icant cooling and gains in sea ice may have allowed krill densities 
to increase in the Pacific sector (150°E to 90°W) since 1930 (55), 
and this trend is predicted to continue over the coming decades 
(54). The increase in krill density coincides with a small increase 
in assignment to high-latitude foraging grounds for SRWs from 
New Zealand and SE Australia over the past 20 y. Finally, changes 
in krill distribution over time have not been reported for the 
Indian sector (10°W to 150°E) due to a sparsity of data (60, 61), 
limiting our capacity to interpret observed changes in foraging 
ground assignments of the SW Australian wintering ground.

In contrast to the recent decline in the use of high-latitude for-
aging areas, we found persistent use of mid-latitude foraging areas 
across centuries through comparison of isoscape assignment of skin 
samples and historical whale catch data (Fig. 4). Habitat modeling 
using historical whaling and satellite track data (24, 25, 38) indi-
cates that the subtropical front (~30 to 40°S) is a key oceanographic 
feature used as foraging habitat by SRWs and other oceanic pred-
ators (62) in the Southern Ocean. The consistent use of this feature 
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across centuries is supported by climate model predictions and the 
lack of systematic changes in the locations of subtropical fronts 
over the past few decades (1). Furthermore, SRWs likely forage on 
copepods at mid-latitudes (23), which may be less sensitive to shifts 
in ocean temperature than Antarctic krill (63). Whaling vessels of 
the 18th to 20th centuries rarely ventured into the remote and 
dangerous high latitudes (>50°S) of the Southern Ocean; thus, 
historical use of these waters by SRWs might be underestimated 
in our analysis in comparison to use of mid-latitude foraging 
grounds. Nonetheless, there could be a combination of physical 
and biological factors that promote stability in mid-latitude forag-
ing grounds associated with ocean fronts. Such stability has impli-
cations for the resilience of oceanic predators that depend on this 
productive habitat, such as seabirds (64), marine mammals (65, 
66), sharks (67), bony fish, and squids (68), but to our knowledge, 

no other studies have examined use of this ecosystem over such a 
long time period. Accordingly, we recommend that SRWs are inte-
grated into future work to inform marine conservation and man-
agement strategies of subtropical front ecosystems in the Southern 
Ocean (10).

The contrast between changes in foraging at high latitudes 
and consistent or increasing use of mid-latitude habitat could 
be related to the differing trajectories of SRW populations. In 
recent decades, shifts in SRW population demography have been 
linked with climate variability. For example, there are strong 
links between reproductive output of SRWs wintering in Brazil 
and indices of krill abundance (40), highlighting the historical 
importance of high-latitude foraging areas to SRWs that winter 
off South America. In South Africa, a suspected climate-driven 
shift from high-latitude to mid-latitude foraging grounds (17) 
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coincided with a decline in body condition (69) and calving 
rates (70). SRWs wintering in SW Australia have also experi-
enced a decline in reproductive output coincident with 

latitudinal shifts in foraging grounds (71). In contrast, a large 
proportion of SRWs wintering in the Auckland Islands consist-
ently forages in mid-latitudes near the subtropical front (24) 
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and has the best body condition score of any right whale pop-
ulation (72) in addition to having a high population growth rate 
(73). Use of distinct foraging grounds by other baleen whale 
subpopulations has been associated with significant differences 
in body condition that likely impacts survival (74). Similarly, 
we hypothesize that SRW populations that are more dependent 
on mid-latitude foraging grounds may have steadier recovery 
trajectories than those with significant use of high-latitude hab-
itat. Such regional heterogeneity has been shown as important 
to understand large-scale patterns in habitat use by humpback 
whales (75). Therefore, future work should investigate regional 
population dynamics or body condition relative to prey availa-
bility and the strength of assignments to high-latitude and 
mid-latitude foraging grounds.

High-latitude waters are generally considered to be the prime 
foraging grounds for the Argentinean SRW population (34), 
but our analysis unexpectedly revealed that this population 
largely uses mid-latitude foraging grounds during the late aus-
tral summer and autumn. A few individuals wintering in 
Argentina were assigned to high-latitude waters (Fig. 2B) out-
side the isotopically assigned foraging grounds averaged for the 
population (Fig. 2A), probably due to individual variability in 
habitat use (76). Part of the Argentinian population is known 
to feed near South Georgia Island/Islas Georgias del Sur around 

54°S (29, 77), where anomalously warm temperatures can neg-
atively impact calving success in the following year (40, 41). 
Furthermore, a marked increase in adult female mortality rates 
was detected following El Niño events (42), however, individual 
variability in foraging distribution has also been revealed in this 
population [Fig. 1A; (34, 77)]. As with South Africa and Brazil, 
SRWs wintering in Argentina may have shifted to forage more 
in mid-latitudes, at least over the seasonal time window covered 
by this study, but decadal changes could not be investigated for 
this population due to the restricted sampling period from 2000 
to 2009 (SI Appendix, Fig. S10). Argentinian SRWs are also 
known to forage in both high latitude and mid-latitude of the 
south Atlantic Ocean, and the isotopic signal from the former 
may be masked by the latter as foraging continues over the 
Patagonian Shelf during the northward migration in late 
autumn. In support of the latter hypothesis, historical stable 
isotope analysis from bone samples of SRWs (76) and satellite 
tracking demonstrated intensive use of the outer continental 
shelf and slope between 35°S and 52°S (29), where these whales 
likely encounter exceptionally productive conditions as they 
migrate during the late austral autumn.

We found long-term, persistent use of mid-latitude foraging 
grounds over several centuries despite SRWs being reduced by 
whaling to less than 1% of their historic population size (26, 27). 

Whaling Data
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42% / 74%
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South Africa SW Australia SE Australia
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n = 766

Fig. 4. Geographic positions of (A) American and Soviet SRW whaling records, and (B) overlap with foraging grounds isotopically assigned to each wintering 
ground. In panel B, only the whaling records occurring within the foraging bubble (outlined in gray) set for each wintering ground are mapped (indicated by 
n in each panel). Population-level average core and general foraging areas are shown in dark and light colors, respectively. The percent of whaling records 
overlapping with the core and general foraging grounds is indicated over each panel (core %/general %). Note Australia wintering grounds are divided into SW 
and SE. Parallels of latitude represented in gray in each map mark 30°S, 50°S, and 70°S.
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We hypothesize that social or behavioral factors could contribute 
to maintaining SRW distributions, notably maternally directed 
fidelity to foraging grounds. When conserved across generations, 
this fidelity is termed “migratory culture” (78) and has been 
inferred in SRWs from correlations between isotopic and genetic 
data (77). A number of species of baleen whales are known to have 
lost the knowledge of migratory destinations when the population 
that used the area was extirpated by commercial whaling (79). In 
contrast, the potential shift away from high-latitude foraging 
grounds observed here for SRWs suggests behavioral flexibility, 
perhaps through experience or social transmission from conspe-
cifics (78). Such flexibility in response to climatic shifts has been 
demonstrated in other marine predators (e.g., ref. 14) including 
baleen whales (15, 80).

The isoscape assignment approach used in this study provides 
unprecedented knowledge about SRW foraging grounds. This 
approach allows us to investigate foraging ground assignments 
across broad spatial and temporal scales compared with tradi-
tional multivariate statistical analyses that are limited to tests 
of significant differences in the distribution of skin isotope val-
ues between sample partitions (SI Appendix, SI1). In the past, 
process-based isotope models have generally not been used to 
geolocate animals due to their inherently high levels of uncer-
tainty (35), but the newest generation of data-constrained, 
process-based phytoplankton isoscapes used here (37) appears 
to capture the broad-scale patterns of the circumpolar SRW 
distribution (Fig. 4). Critically, this model accounts for annual 
and seasonal variation of isotopic patterns across the Southern 
Ocean that may be reflected in SRW tissue collected at different 
times (e.g., ref. 81), provided that the estimated isotopic incor-
poration rates of skin tissue are accurate (33, 82). The resulting 
foraging ground assignments showed clear latitudinal discrim-
ination but less ability to delineate the longitudinal limits of 
foraging ranges. Therefore, we used the maximum migratory 
distance observed in satellite tracks of SRWs departing from 
the Auckland Islands as prior knowledge to estimate putative 
foraging ranges (SI Appendix, Fig. S11). Individual SRWs 
almost certainly show migratory specialization and might be 
foraging closer to their respective wintering grounds, while 
other individuals may also forage beyond the maximum distance 
assumed here.

Several limitations must be considered prior to expanding 
this approach to other species or regions. While this work was 
based on all available samples at the time of analysis, we 
acknowledge that some regional datasets are small but actually 
represent a sizable proportion of the total population size in 
some cases; e.g., SE Australian dataset (n = 46) is ~20% of the 
total population size (43). Our findings are also supported by 
the identification of regional trends observed in more than one 
wintering ground, such as in Brazil, SW Australia, and South 
Africa. Additionally, while our approach was able to account 
for abiotic factors influencing isoscape variability such as the 
Suess effect and oceanographic processes, it is not able to 
account for potential biotic drivers such as changes in food web 
structure. Such factors can influence plankton isotope values 
and in turn the isotope values of higher trophic level predators 
(83, 84). Factors unrelated to the isoscape analysis could also 
be contributing to the observed changes, such as increased com-
petition from other krill predators at higher latitudes. A caveat 
in using isotope analyses to study the distribution of large, 
endangered, or elusive species is uncertainty in trophic discrim-
ination factors (TDFs) needed to directly compare consumer 
tissues with baseline isoscapes. Here, we were able to constrain 

this variable through analysis of an independent satellite track-
ing dataset to validate foraging locations. Since we focused on 
investigating circumpolar-scale patterns, we selected TDFs to 
enable comparison across wintering grounds. We acknowledge 
different populations could forage at slightly different trophic 
levels (34), which would impact TDFs used to directly compare 
whale and phytoplankton isotope values, and possibly explain 
the difference in TDFs estimated for SW Pacific and SW 
Atlantic SRW populations (SI Appendix, Fig. S12). We believe 
our circumpolar perspective and approach that incorporates 
temporal variation in isoscapes and tracking data to estimate 
range and TDFs is robust and should inspire future research in 
isoscape geographic assignments.

Long-term distributional changes of pelagic predators are noto-
riously difficult to assess due to flexible use of their large range 
that impedes direct observation, particularly in the remote waters 
of the Southern Ocean. We surpassed these challenges by using 
an isotope-based approach to assign SRWs at both the individual 
and population levels to circumpolar foraging grounds. We show 
that this mobile predator displays short-term (decadal) flexibility 
in its latitudinal foraging distribution, perhaps driven by impacts 
of rapid climate change, but long-term (century-scale) consistency 
in the use of mid-latitude foraging grounds as it recovers from 
commercial whaling. A southward range shift and decreased avail-
ability of suitable habitat are predicted to occur at mid-latitudes 
by the end of the century for SRWs (24). However, SRW popu-
lations seem to have had diverging responses to global warming 
over the past few decades, potentially shifting toward increased 
reliance on the subtropical front located in mid-latitudes. Overall, 
SRWs appear stable in their use of the mid-latitude foraging 
grounds, despite potential loss of cultural migratory memory after 
the whaling era. In addition to showing potential shifts in distri-
bution, this work represents a useful global assessment of SRW 
foraging habitat use. These findings can be applied to the identi-
fication of high-priority areas for SRW protection, assessment of 
offshore anthropogenic threats, inference of the stock identity of 
whales exploited by commercial whaling, and understanding the 
drivers of variable recovery of SRW populations around the 
Southern Ocean.

Materials and Methods

Stable Isotope Analysis. Carbon (δ13C) and nitrogen (δ15N) isotope values 
of adult SRW skin collected during the austral winter/spring (July–October) 
were compiled from the literature or generated for this study: 419 published 
values and 583 new values, spanning 1994 to 2020 (SI Appendix, Tables S1 
and S5). Most samples came from skin biopsy or sloughed skin samples 
from living whales, except for one sample from a whale killed by a ship strike 
in Queensland, Australia, and two stranded adult whales from Argentina 
(SI Appendix, Table S1). All samples were lipid-extracted prior to isotope anal-
ysis; details about extraction protocols are provided in SI Appendix, Table S1 
(33, 85). Isotope values were normalized using internal reference materials 
calibrated to internationally accepted standards for carbon (Vienna Pee Dee 
Belemnite) and nitrogen (atmospheric N2) isotope analyses. Precision for δ13C 
and δ15N values was estimated by analysis of internal reference materials and 
was ≤0.2‰ (SD) for both δ13C and δ15N values (SI Appendix, Table S1). We 
also measured the weight percent carbon and nitrogen concentrations of each 
sample as a control for lipid content; samples had a mean (±SD) [C]:[N] ratio 
of 3.3 ± 0.3 indicative of pure protein.

Whaling Records. We compiled records (catches and sightings) by American 
(1792 to 1912) and Soviet (1961 to 1968) whaling vessels (22, 23). We restricted 
this dataset to records that occurred at >30°S during the late austral summer and 
autumn (from February to July) to match with the temporal and spatial window 

http://www.pnas.org/lookup/doi/10.1073/pnas.2214035120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2214035120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2214035120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2214035120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2214035120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2214035120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2214035120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2214035120#supplementary-materials
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of the isoscape assignment. Due to the scarcity of whaling data south of 50°S 
(specifically the American whaling data), we acknowledge that it is not fully rep-
resentative of SRW use of high latitudes.

Isoscape Assignment Modeling. The baseline phytoplankton isoscapes were 
acquired from MOBI (37, 44) for phytoplankton that include recent improve-
ments to the marine iron cycle (86) (https://andreasschmittner.github.io/
Models/MOBI/index.html). Isoscapes consist of δ13C and δ15N rasters at 3.6° 
× 1.8° resolution for the Southern Hemisphere (37, 44). These model out-
puts consist of monthly δ13C and δ15N averages in a hindcast scenario from 
1992 to 2021, and the δ13C predictions incorporate warming from increas-
ing atmospheric CO2 and input of decreasing atmospheric δ13C values from 
anthropogenic emissions (i.e., Suess effect). The model outputs were corrected 
with zonal averages derived in latitudinal bins from a model data comparison 
using recently published particulate organic matter datasets [SI Appendix, 
SI2 (87, 88)].

To compare the isotope value of whale skin to the MOBI isoscape to enable 
the identification of foraging grounds, we accounted for both the isotopic incor-
poration rate and trophic discrimination. The isotopic incorporation rate reflects 
the time period over which dietary inputs are incorporated into consumer tissue, 
which for skin is estimated to be up to 6 mo prior to sampling for baleen whales 
(33, 82). For each whale, we provided a custom isoscape by averaging the MOBI 
isoscape across the third to fifth months prior to sampling (33), ranging from 
the late austral summer to autumn (SI Appendix, Fig.  S13), as the first 2 mo 
prior to sampling were removed from the isoscapes to exclude the migratory 
period. Trophic discrimination adjusts for the difference in trophic level between 
the MOBI (phytoplankton) isoscape and SRW skin and was determined using a 
validation process described below.

Likely foraging area origins were determined using skin isotope values 
and δ13C and δ15N isoscapes in a bivariate normal probability function (48) 
with a pooled error structure described in SI Appendix, SI2 that incorporates 
uncertainty in TDFs and the isoscape rasters. Assignments were made using 
both δ13C and δ15N values to estimate the likelihood that each raster cell in 
the isoscape represents the foraging area origin. The geographical scope of 
assignment was constrained to a 6,500-km radius “potential foraging range” 
from each wintering ground to reflect prior information on swimming dis-
tances and migration behavior of SRWs (SI Appendix, SI3 and Fig. S12). For 
each whale, a posterior probability of origin map within this potential for-
aging range was generated and rescaled so that all pixel values summed to 
one. Then, individual assignment maps were pooled in two different ways 
to estimate population-level foraging grounds and individual-level foraging 
grounds that allowed us to explore interindividual variation in movement 
(49). For the population-level summary, rescaled individual maps were 
averaged per wintering ground. We mapped the probability distribution of 
the pixels in the potential foraging range and used a threshold approach 
to determine general (pixels with the highest 50% probability) and core 
(highest 25%) foraging areas (49, 50). For the individual-level summary, 
rescaled individual maps were binned into binary maps with a threshold 
corresponding to the 50% contour of the probability distribution. The result-
ing individual foraging areas were summed by wintering ground, and we 
calculated the percent of individuals whose foraging areas were assigned to 
each cell. For clarity, the assignment modeling approach is presented in a 
schematic SI Appendix, Fig. S14.

TDF. We used satellite track data from SRWs to validate δ13C and δ15N TDFs 
used in our isoscape assignment model (SI Appendix, SI4). Briefly, we set a 
range of TDFs of 2 to 4‰ for δ13C and 4 to 6‰ for δ15N based on the literature 
to account for the ~2 trophic levels between SRW and phytoplankton (33, 
82, 89–93). We then compiled movement data from 49 individuals tagged 
with Argos-linked satellite tags (Wildlife Computers) in two winter breeding 
grounds [south Atlantic: Argentina, n = 31 (29), and Indo-Pacific: Auckland 
Islands, n = 16 (94)] and one summer foraging ground [south Atlantic: South 
Georgia, n = 2 (95)] associated with the Argentinian wintering ground (96). 
State space models were used to define area-restricted search (ARS) behavior 
indicative of foraging (SI  Appendix, SI4 and Fig.  S15). ARS positions were 
aggregated over a grid that matched in resolution and extent with the MOBI 
model (37, 44) for phytoplankton. We then iterated the isoscape assignment 

model (described above) for each combination of δ13C and δ15N TDFs (at 0.5‰ 
increments). The TDF values that produced the geographic assignments with 
the highest percentage overlap with the ARS data were identified for the south 
Atlantic and Indo-Pacific and then averaged to generate a value to apply across 
the circumpolar dataset (SI Appendix, SI4 and Fig. S12).

Temporal Analysis. First, we investigated distributional changes over the 
last three decades by comparing foraging ground assignments across 1994 to 
1999, 2000 to 2009, and 2010 to 2020 (SI Appendix, SI4 and Fig.  S10). We 
produced separate probability of origin maps for samples collected in each 
wintering ground and each time period. We assessed distributional changes in 
the Southern Ocean by calculating the percent change of the general foraging 
surface area assigned by decade to waters >60° latitude. Decadal changes were 
further analyzed by comparing the distribution of the population-level summed 
probabilities of foraging assigned to each pixel in assignment maps of each 
wintering ground by latitudinal bins. No probability threshold was applied in this 
case, in contrast to the population level summaries, to ensure that we captured 
all available information (49).

Second, we investigated distributional changes over four centuries (18th to 
21st century) through comparison to whaling catch records. We selected catch 
records that occurred within the foraging bubbles assigned to each wintering 
ground that occurred during the late austral summer and autumn and calculated 
the proportion of catches spatially overlapping with predicted core and general 
foraging areas quantified as percent overlap.

Data, Materials, and Software Availability. All study data are made publicly 
available in the SI Appendix. Codes can be downloaded from https://github.com/
SoleneDerville/SRW-isoscape-assignment.
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