
CrAssphage May Be Viable Markers of Contamination in Pristine
and Contaminated River Water

Nyasha Mafumo,a Oliver K. I. Bezuidt,a Wouter le Roux,b Thulani P. Makhalanyanea

aDSI/NRF SARChI in Marine Microbiomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
bWater-Related Microbiology Laboratory, Water Centre, Pretoria, South Africa

ABSTRACT Viruses are the most biologically abundant entities and may be ideal
indicators of fecal pollutants in water. Anthropogenic activities have triggered drastic
ecosystem changes in rivers, leading to substantial shifts in chemical and biological
attributes. Here, we evaluate the viability of using the presence of crAssphage as
indicators of fecal contamination in South African rivers. Shotgun analysis revealed
diverse crAssphage viruses in these rivers, which are impacted by chemical and bio-
logical pollution. Overall, the diversity and relative abundances of these viruses was
higher in contaminated sites compared to pristine locations. In contrast to fecal coli-
form counts, crAssphage sequences were detected in pristine rivers, supporting the
assertion that the afore mentioned marker may be a more accurate indicator of fecal
contamination. Our data demonstrate the presence of diverse putative hosts which
includes members of the phyla Bacteroidota, Pseudomonadota, Verrucomicrobiota,
and Bacillota. Phylogenetic analysis revealed novel subfamilies, suggesting that rivers
potentially harbor distinct and uncharacterized clades of crAssphage. These data pro-
vide the first insights regarding the diversity, distribution, and functional roles of
crAssphage in rivers. Taken together, the results support the potential application of
crAssphage as viable markers for water quality monitoring.

IMPORTANCE Rivers support substantial populations and provide important ecosys-
tem services. Despite the application of fecal coliform tests and other markers, we
lack rapid and reproducible approaches for determining fecal contamination in riv-
ers. Waterborne viral outbreaks have been reported even after fecal indicator bacte-
ria (FIB) were suggested to be absent or below regulated levels of coliforms. This
indicates a need to develop and apply improved indicators of pollutants in aquatic
ecosystems. Here, we evaluate the viability of crAssphage as indicators of fecal con-
tamination in two South African rivers. We assess the abundance, distribution, and
diversity of these viruses in sites that had been predicted pristine or contaminated
by FIB analysis. We show that crAssphage are ideal and sensitive markers for fecal
contamination and describe novel clades of crAss-like phages. Known crAss-like sub-
families were unrepresented in our data, suggesting that the diversity of these
viruses may reflect geographic locality and dependence.

KEYWORDS bacteriophages, bacteria, crAssphage, metagenome assembled genomes,
phylogeny, faecal pollution, viruses

The exposure to anthropogenic pollutants has resulted in the drastic decline in the
quantity and quality of potable water. Aquatic pollutants include an assortment of

toxic chemicals and pathogenic microorganisms (1, 2). In developing countries, threats
to drinking water are exacerbated by the inadequate access to wastewater treatment
facilities (3–5). As a result, drinking water sources may be exposed to human fecal con-
tamination, which can result in low-quality drinking water, with increased potential of
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spreading waterborne diseases (6–9). Active surveillance to monitor and detect potential
pathogens is vital for protecting public health and ensuring potable water (10–12).
Currently, for microbial contaminants, these efforts have relied on the use of fecal indicator
bacteria (FIB) such as Escherichia coli (5, 13, 14). However, the concentrations of FIB do not
always correlate with the presence of some biological pollutants present in aquatic envi-
ronments (15–20). This has been demonstrated by several studies, which have reported on
waterborne viral outbreaks that occurred after analyses based on FIB were suggested to be
absent or below regulated levels of coliforms (21, 22). This discrepancy demonstrates the
failure of current methods and suggests the need to further develop new monitoring strat-
egies, which account for all biological risks associated with contaminated water. This indi-
cates a need for a universal marker, which is highly sensitive, for integration into modern
microbial contamination surveillance protocols (23).

Viruses are the most biologically abundant entities on Earth and have been pro-
posed to be better indicators of fecal pollutants (24–27). Several metagenomic studies
have shown that crAssphage are the most abundant viruses in the human gut (28–31).
The current data suggest that crAssphage cluster into five discrete groups designated
as alpha-gamma, beta, delta, epsilon, and zeta (28), and span 10 distinct and phyloge-
netically diverse genera (32, 33). Based on the analysis of CRISPR spacer regions, and
functional characterization, it appears that crAssphage mainly infect bacteria from the
phylum Bacteroidota (28, 31, 32, 34, 35). Due to this abundance, these double-stranded
(ds) DNA viruses may be ideal microbial source tracking (MST) markers of human fecal
contamination (23, 36–38). Stachler and Bibby showed the potential utility of using
crAssphage-based markers for tracking human fecal waste. The authors showed that
crAssphage was highly host specific and highly abundant in sewage and biosols in
Europe and the United States. The study also showed that crAssphage were detected
in sewage samples from Asia and Africa, albeit at lower abundances. The results sug-
gest that this phage is prevalent globally and support its application as a MST marker.
Following these observations, several qPCR assays have been developed (37, 39).
These assays have been successfully applied to quantify crAssphage in feces, waste-
water, and surface waters in several regions, including parts of Europe (39–41), Asia
(42, 43), North America (23, 44), South America, (45) and Australia (46). Evidence from
these studies suggests that crAssphage may be highly specific for detecting human
feces and sewage, with little or no cross-reactivity with animal feces, and hence, ideal
MST markers. However, several studies have also demonstrated that crAssphage may
not occur exclusively in the human gut, but may be present in the guts of animals and
feces, albeit at lower concentrations (36, 47, 48). Nevertheless, there is an urgent need
to investigate the suitability of using crAssphage as a biomarker of fecal contamination
in underrepresented and understudied geographic locations such as Africa, to assess
the feasibility of using the virus as a universal marker (48–50).

To reduce this knowledge deficit, we used shotgun metagenomic analysis to explore
the diversity of crAss-like phages in two South African rivers (Fig. 1A). Based on previous
studies (36, 37, 40, 49), we predict that crAssphage in contaminated sites will be more
abundant and diverse. We selected three conserved capsid and genome-packaging pro-
teins (terminase large subunit, portal proteins, and major capsid proteins) as markers for
detecting crAss-like phages in samples collected from both pristine and contaminated
sites. We characterized and classified crAss-like sequences from these environments into
subfamilies and identified distinct clades of diverse crAss-like phages.

RESULTS
The diversity of bacterial genomes in river systems. In total, 297 bacterial metage-

nome assembled genomes (MAGs) were reconstructed from our six metagenomes. These
MAGs constituted 115 high and 149 medium quality bins, which were dominated by
Pseudomonadota, Actinobacteriota, and Bacteroidota phyla, respectively (Table S1). A phyloge-
netic reconstruction of Bacteroidota showed that MAGs from this study clustered separately
from NCBI complete reference genomes (Fig. 1B). Furthermore, the data suggest a clear
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FIG 1 Map of sampling sites and a phylogenetic tree of Bacteroidota. (A) The six sampling sites in the Limpopo,
Province of South Africa. The letters designate specific sampling locations as with L and B for Letsitele and Thabina

(Continued on next page)
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genetic discontinuity between our Bacteroidota and those from the NCBI, based on ANI
scores #88% (Table S2). Similarity searches using 298 CRISPR spacers, detected in the high
and medium quality MAGs, predicted 16 potential bacterial hosts. These hosts were associ-
ated with crAss-like viruses recovered from our samples. Among these 16 putative hosts, 14
belonged to Bacteroidota, and remaining hosts were affiliated with Verrucomicrobiota and
Pseudomonadota. Further analysis, using iPHoP, resulted in the prediction of six Bacteroidota
and two Bacillota putative hosts (Table S3). This expanded the known pool of putative hosts
to three, and added increased the repertoire of phyla infected by our crAss-like viruses.

CrAssphage relative abundances in contaminated and pristine water. As a proxy
for crAssphage relative abundance, transcripts per million (TPM) values (Table S4) were
generated to evaluate the distribution and diversity of crAss like phages in the different
sampling sites (Fig. 2). The relative abundances suggest that some crAss-like phages may
be site specific. For instance, several crAss-like phage genomes (crAss 13577, crAss 22689,
crAss 50418) were found in high abundances in samples from Letsitele but were absent in
Thabina. Furthermore, we also identified specific crAssphage genomes (crAss 12948, crAss
16291, crAss 3238), which were completely absent upstream of settlements (sites B1 and
L1). However, these genomes were identified in downstream sites, which were located
within the vicinity of human settlements and are subject to human fecal contamination
due to the use of pit latrines (sites B2, B3, L2, and L3) (Table S4). Overall, as predicted, we
observed higher relative abundances and diversity of crAss-like phages in the contami-
nated sites (B2, B3, L2) compared to pristine sites (Fig. 2).

Diversity of uncharacterized crAssphage in rivers. HMM profile searches, using
major capsids, terminase large subunits (TerL), and portal proteins, resulted in the predic-
tion of 384 crAss-like contigs across all metagenomes. Of the overall predicted crAss-like
contigs, only 57 harbored $2 hallmark genes, representing a total of 50 vOTUs. Of these,
we found six high-quality viral contigs, five medium-quality, and 46 low-quality viral con-
tigs due to the highly fragmented nature of these sequences (Table S5). Moreover, the
reconstruction of phylogeny, using dereplicated TerL protein sequences (51), showed the
diversity of crAss-like phages associated with our data (Fig. 3). From this analysis, we
observed that around 64% (48 of 75) of our crAss-like TerL sequences clustered separately
from the previously proposed groups, whereas the remaining (34) sequences clustered
with known Epsilon and Delta subfamilies.

Of the total crAss-like phage predictions, 20 contigs had all three hallmark genes.
The size of the contigs ranged from 12 to 119.3 kbp. Of these, 17 contigs were classi-
fied as putative Epsilon (16) and Delta (1) subfamilies, respectively, based phylogenetic
placements using TerL proteins. The Epsilon crAss-like phages were the largest contigs
(Data set S1). We selected five high-quality and near-complete contigs, with size $100
kbp, and compared these to three human gut associated crAss-like genomes (Fig. 4).
The analyses suggest that crAss-like contigs from our data were highly similar in com-
parison to reference genomes. However, the order of genes related to the RNAP subu-
nit and to the capsid gene module, was conserved across all genomes (Fig. 4).

DISCUSSION

CrAssphage are potentially ideal MST markers for detecting human fecal contamination
due to their abundance, specificity, and sensitivity (36, 37, 52–54). However, few studies have
investigated the viability of using crAssphage as potential markers in environmental water at
both global and local scales (36, 48, 50). In this study, we conducted in silico analysis to deter-

FIG 1 Legend (Continued)
(known locally as the Bathabina) River, respectively. Specific sites include the following: L1, upstream of the settlements and
irrigation; L2, midstream; L3, downstream of the settlements; B1, upstream of the settlements; B2, midstream; B3, downstream
of the settlements. (B) Bacteroidota maximum-likelihood phylogenetic tree. The metagenome assembled genomes (MAGs)
obtained from this study are indicated in green. Those retrieved from the NCBI database are shown in red. The tree illustrates
separate clustering between the MAGs obtained in this study and those from the NCBI. The genomes from this study form a
separate and distinct cluster. Bootstrap values were calculated to support the robustness of the different clades and are
indicated by the insert. The Limpopo map was sourced from dmaps (https://d-maps.com/pays.php?num_pay=1641&lang=en),
and the inset was sourced from Google Maps.
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mine the feasibility of crAssphage as indicators of water contamination in two South African
rivers. The sampling sites in the rivers were designated as pristine or contaminated based on
fecal quality assessments (Table S6). Our analysis suggests that consistent with our predic-
tion, crAssphage appear to be more abundant in contaminated sites (B2, B3, and L2) com-
pared to pristine sites. We also reveal highly diverse and uncharacterized crAssphage in these
rivers, expanding the genomic repertoire of known crAss-like clades.

By expanding the known crAss-like clade, our data shed new light regarding the estab-
lished potential hosts of these viruses. Previous studies suggest that crAssphage primarily

FIG 2 The relative abundances of crAssphage viruses. The relative abundance was calculated by
read mapping sequences from the different sampling locations. The six sites (L1, L2, L3, B1, B2,
B3) are shown in the x axis. The labels B and L correspond to Thabina and Letsitele river sampling
sites, respectively. The cluster analysis was based on Euclidean distances. The putative crAssphage
sequences, obtained from this study, are shown on the right y axis. The dark blue color indicates
high crAssphage abundances, in a specific site, while white shows the absence of crAssphage per
location. The heatmap shows generally higher diversity and distribution of crAssphage observed
in contaminated sites compared with pristine sampling locations.
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infect Bacteriodata (28, 31, 32, 34, 35). Host prediction using two independent approaches
suggests the presence of three other potential host phyla, Bacillota, Verrucomicrobia, and
Pseudomonadota. These results corroborate a recent in silico prediction by N. Yutin et al.
(28), which proposed Pseudomonadota and Bacillota as other putative hosts of crAssphage.
These findings provide additional evidence confirming that crAssphage may have a wider

FIG 3 Phylogenetic tree of crAssphage sequences. The tree was constructed using TerL protein sequences
from crAssphage. CrAssphage, obtained from this study, are colored black. CrAssphage sequences obtained
from a recent study (28) representing Zeta, Epsilon, Gamma, Alpha, Beta, and Delta clusters are shown in
blue, green, purple, brown, red, and green, respectively. CrAssphage obtained in this study clustered with
the Zeta, Epsilon, and Delta subfamilies. In general, crAssphage retrieved from this study clustered separately
from those obtained from the Yutin et al. (28) study. This suggests that they may potentially represent
novel, and as yet, uncharacterized crAssphage sequences.
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range of hosts than initially predicted. In addition to the expanded host phyla, phylogenetic
analysis suggests that the Bacteriodata from our study may be more diverse than previously
described genomes. This is perhaps unsurprising as the majority of current Bacteroidota
genomes were isolated from human guts of western populations (55–57). Our MAGs were
retrieved from African rivers, which are under different evolutionary selective pressures (e.g.,
temperature, physicochemical variables) compared to gut bacteria (58). It has been estab-
lished that differences in geographical origin, ethnicity, and urbanization substantially shape
the diversity of microbiota (59–61). It is possible that these variables may contribute to the
disparities observed in this study at the species level (60). Our findings suggest that
crAssphage host diversity may be substantially under characterized. It is possible that,
depending on the environmental niche, crAssphage may associate with other hosts. For
instance, Verrucomicrobia, which are known to be more abundant in soils (62, 63), may be
more ideal hosts for crAssphage in these niches.

The relative abundance estimates suggest that crAssphage dominate impacted river
sites. This result validates our proposal that these sequences may be viable markers of con-
tamination and is consistent with previous studies based on quantitative PCR (37–40, 42–
44). A previous study by Stachler et al. used sequence data to demonstrate the potential of
crAssphage based biomarkers. To the best of our knowledge, this study provides the first
evidence, based on genome resolved metagenomics, showing the applicability of crAssphage
sequences as markers of contamination in South African rivers. While FIB were useful in provid-
ing a general indication of pristine and contaminated sites, our analysis suggests that
crAssphage may be more sensitive markers. In addition to their sensitivity (38, 43, 54, 64),
previous studies suggest that crAssphage are more resistant to environmental stress com-
pared to FIB (65). The ability to withstand environmental stress may favor the use of these
indicators as ideal markers of contamination.

An additional benefit of using crAssphage, as molecular markers of contamination,
is their diversity and global distribution (28, 32, 66, 67). Based on evaluating the

FIG 4 Genomic structure comparison of near complete Epsilon crAssphage. The crAssphage sequences from this study were compared with the prototypical
crAssphage (p-crAssphage), and two other gut associated crAssphage. Regions of amino acid sequence homology are shown. Blue indicates 100% homology and
red indicates the lowest similarities. The RNAP subunit and the capsid gene module were found in all the genomes analyzed.
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diversity and phylogeny of crAss-like viruses, the 48 TerL protein sequences from our
data were highly distinct relative to known clades. This distinct clustering suggests
that crAss-like phages from our data set may represent highly diverse subfamilies,
reflects geographic locality and dependence (48), and further supports our assertion
regarding evolutionary niche selection of these bacteriophages. Previous work on
wastewater has provided strong evidence of geographic dependence of crAssphage
(36, 48). These studies hypothesized that the abundances and diversity of crAssphage
would be higher in European and U.S. samples, compared to those in Africa and Asia
(36, 48, 66). Similar to findings on host microbiota, the variation in the diversity of
crAssphage may be explained by the differences in urbanization and diet (59, 68, 69).
These differences have been shown to drive changes in both host and phage genomes
(66, 69). A small proportion of the remaining TerL sequences (27) identified in this
study were classified with known Epsilon, Delta, and Zeta subfamilies. Epsilon sequen-
ces were recently described by N. Yutin et al. (28) and appear to be dominated by
sequences from gut microbiota. The Delta subfamilies constitute the largest group of
gut crAss virome and are known to be distantly related to the Epsilon subfamilies (28).
The identification of sequences from these subfamilies hints at the presence of human
fecal contamination in the river samples. However, relative to the other sequences,
these subfamilies were underrepresented in the sampling area. The majority of these
were affiliated with uncharacterized crAss-like sequences, reported in this study, repre-
senting a potentially novel clade. This finding further supports the effects of selective
pressures and crAssphage niche specificity.

To further elucidate the diversity of crAssphage, comparison of the genomic struc-
ture of five near-complete sequences retrieved from this study was done. By compar-
ing these sequences with ФcrAss001 (35), ФcrAss002 (70), and prototypical crAssphage
(p-crAssphage) (31), the analysis revealed high variability in similarity and gene order
conservation among the phages. From the five epsilon crAssphage, two were nearly
identical, and three were highly homologous. This finding supports the assertion that
sequences from this study were both novel and distinct from previously characterized
phages. The observed differences suggest that, although the five crAss-like phages
were classified within the epsilon subfamily, these may in fact represent four new gen-
era (32, 33) and calls for the revision and possible expansion of the current taxonomy.
Together these results support our proposed view regarding the potentially diverse
assortment of uncharacterized crAss-like sequences in various environments.

Conclusion and future prospects. Our findings increase the repertoire of known
crAss-like phages. The expanded taxonomy, including potentially novel clades, estab-
lishes a baseline for the identification of as yet unknown environmental crAssphage.
These novel clades reported in this study were linked to new host phyla (Bacillota,
Verrucomicrobia, and Pseudomonadota), confirming previous reports which demon-
strated that crAssphage are not exclusively associated with Bacteroidota. In addition,
our analysis supports the use of crAssphage viruses as biomarkers of fecal contamina-
tion. Using crAssphage as microbial source tracking markers may assist in mitigating
the spread of waterborne diseases due to their robustness and sensitivity. However,
future studies in environmental crAssphage viruses are required to validate these
observations across a variety of river systems. These validations are required to estab-
lish the diversity of these sequences, which may result in the application of crAssphage
as quantitative markers of fecal contamination.

MATERIALS ANDMETHODS
Study area, sample collection, and processing. The samples were collected in the Limpopo

Province of South Africa, in the Bathlabile tribal area, following consent from the Bathlabile Traditional
Council. The area relies on water sourced from the Thabina and Letsitele rivers, which are subject to
chemical and biological pollutants. The chemical pollutants in the Thabina river are primarily due to the
application of organic fertilizers to nearby citrus farms, while biological pollutants in both rivers are in
the form of fecal matter from humans (due to the use of pit latrines) and free roaming animals.

Six water samples were collected from pristine and polluted river waters. The selected locations
were distributed at three sites along the Thabina and Lestsitele rivers (Fig. 1A). The B1 and L1 sites being
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from a pristine source, upstream of settlements, and agricultural practices. The B2 and L2 sites were in
the middle of settlements, whereas B3 and L3 sites were downstream of the settlements (Fig. 1A). Five
liters of water were collected from each location for metagenomic analysis and stored on ice. An addi-
tional liter of water from each sampling location was collected for standard water quality analysis at the
Council of Scientific and Industrial Research (Table S6). The pH, turbidity, coliform, and E. coli counts
were determined for each sample (Table S6). Each sample was filtered through a 0.2 mm polycarbonate
(PES) filter membranes (Merck, RSA). DNA extractions from these filters followed, using the Qiagen
Power Soil DNA Isolation Kits (Qiagen, USA) according to the manufacturer’s instructions. The quality of
the resultant DNA was evaluated using gel electrophoresis (1% agarose) and its concentration was
determined with Qubit dsDNA assay kit in Qubit 4 Fluorometer (Thermo Fisher Scientific, USA). High-
quality DNA from each sample was sent for shotgun sequencing using an Illumina MiSeq (2 � 150 bp)
at Admera Health (NJ, USA).

Metagenomic analysis. To elucidate potential crAssphage hosts, we generated MAGs from shotgun
data. Raw paired-end metagenomic reads (2 � 150 bp) were quality trimmed, assembled, and binned
using the ATLAS pipeline version 2.4.4 with the qc, assembly, and binning parameters (51). Briefly, using
default versions of the tools below, the reads were quality filtered using BBTools version 37.99 (https://
jgi.doe.gov/data-and-tools/bbtools/), assembled using metaSPAdes version 3.13.1 (71), and MAGs were
generated using both metabat2 (72) and maxbin2 (73). The resultant bins were combined, refined and
dereplicated using DAS_Tool version 1.1.2 (74) and dREP version 3.0.0 (75). The dereplicated MAGs were
assessed for quality and completeness using CheckM version 1.1.5 (76). Using previously defined stand-
ards, MAGs with completeness .90% and contamination ,5% were classified as high-quality (Table S7)
and those with completeness of $50% and contamination of ,10% were classified as medium-quality
(77) (Tables S8 to 10).

Taxonomic annotation of bacterial MAGs and host detection. The taxonomy of all medium- and
high-quality MAGs were inferred using the Genome Taxonomy Database Toolkit version 1.6.0 (78). Of
these, we reconstructed a maximum likelihood phylogenetic tree using MAGs classified as Bacteroidota
as these are primary hosts for crAssphage using GTOtree version 1.6.11 (79). We used single copy gene
sets (80) specific for the Bacteroidota phylum. This tree comprised of 47 MAGs, generated from this
study, and included 450 reference Bacteroidota complete genomes acquired from the NCBI RefSeq
release 205 database (81). The phylogenetic tree was visualized and annotated using iTol version 6.6
(82). Following this, we conducted pairwise comparisons between the Bacteroidota MAGs from this
study and the 450 reference Bacteroidota. For these comparisons, we established the criteria of shared
average nucleotide identity (ANI) using FastANI version 1.32 (83).

Hidden Markov models-based detection of crAssphage. For the detection of putative crAssphage, we
acquired 81,246 crAss-related protein sequences from both the NCBI RefSeq (81) and a recent study by N. Yutin
et al. (28). These sequences were clustered into a nonredundant set of 20,039 protein sequences using CD-HIT
version 4.8.1 (84) with parameters: -c 0.9 -n 5 -aS 0.8. The representative sequences from these clusters were fur-
ther compared for shared similarities using BLASTp (80) with e-value 1e-05. The blast results were clustered
using Markov Clustering algorithm (MCL) version 14.137 (85) with 1.5 inflation. Clusters associated with major
capsids, terminase large subunits (TerL), and portal proteins were individually aligned using MAFFT version
7.487 (86) with the -auto parameter, and the resultant alignments were converted to hidden Markov models
(HMM) profiles using hmmbuild version 3.3.0 (87). To search for putative crAss-like viruses in our data, contigs
were predicted for open reading frames (ORFs), using Prodigal v2.6.3 (88), with the -a and -p meta parameters.
The profiles were subsequently searched against all protein sequences predicted in our contigs using the -T 50
parameter in hmmscan version 3.3.0 (87). Contigs predicted to be in possession of $2 of these crAss-like hall-
mark genes were clustered based on 95% sequence identity with over 80% of the shortest contig resulting in
50 viral OTUs and further assessed for quality using CheckV version 0.9.0 (Table S5).

CrAssphage relative abundance and host detection. As a proxy for determining the distribution and
relative abundances of crAss-like phages across sampling sites, the CoverM version 0.6.1 (https://github.com/
wwood/CoverM) tool was used to calculate TPM values. We used 57 crAss-like contigs with $2 hallmark
genes and parent metagenomic reads. The resultant relative abundance estimates were then visualized using
ggplot2 (89) in R v3.6.0 (90). Furthermore, these crAss-like contigs were also processed for host detection.
MAGs generated from this study were searched for CRISPR spacers using MINCED version 0.4.2 (https://
github.com/ctSkennerton/minced/tree/master). The identified spacers were probed for shared sequence sim-
ilarity against the 57 crAss-like contigs, using BLASTn with the following parameters: -e-value 0.01 -word_size
8 -dust no -perc_identity 90. The crAss-like contigs were analyzed for host detection, using the iPHoP (inte-
grated Phage Host Predictions) version 1.1.0 (https://bitbucket.org/srouxjgi/iphop). The taxonomies of our
MAGs were first reclassified with GTDB-Tk version 2.1.0 using the de_novo_wf parameter as required by the
pipeline and were further integrated into the database of hosts. Following this, the iPHoP pipeline was run
using the default parameters.

Genome comparisons and subfamily classification of crAss-like phages. To determine the crAss-
like subfamilies in our data set, we retrieved 96 complete TerL protein sequences from all our metage-
nomes. Protein sequences were clustered based on 95% sequence identity, over 80% of the shortest
contig, resulting in the representation of 75 viral OTUs. These were supplemented, and subsequently
aligned with 623 other TerL sequences acquired from N. Yutin et al. (28) using MAFFT version 7.487 (86)
with the -auto parameter. The resultant alignment file was used to reconstruct a maximum likelihood
tree with 1,000 bootstraps using IQ-TREE version 1.6.6 (91). The tree was then midpoint-rooted, visual-
ized, and annotated using iToL (82). This was followed by comparisons of the five high-quality near com-
plete ($100 kbp) epsilon crAss-like genomes against each other, as well as ФcrAss001, (35), ФcrAss002
(70) (two pure culture isolates), and a prototypical crAssphage (in silico derived) (31) to assess
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relatedness using EasyFig version 2.2.2 (92) using tblastx with parameters: e-value cut-off 0.001 and
length filter 30.

Data availability. The metagenomic data have been deposited at NCBI under BioProject ID
PRJNA894350. Metagenomic assembled genomes are available from https://doi.org/10.6084/m9.figshare
.21640316. The bash script and HMM profiles used to search for crAss-like viruses in our data can be
accessed from https://github.com/SAmicrobiomes/crAssZA.
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