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Abstract: The study focused on the impact of concentration and temperature on the electrical conduc-
tivity, viscosity, and thermal conductivity of GNP/Fe2O3 hybrid nanofluids. The study found that
nanofluids have better electrical conductivity, viscosity, and thermal conductivity than water. The
electrical conductivity and thermal conductivity increase linearly with concentration for a constant
temperature. However, the nanofluid’s viscosity increases with the addition of the hybrid nanopar-
ticles and decreases as the temperature increases. Furthermore, the study shows that the thermal
conductivity of the nanofluid is enhanced with increased addition of hybrid nanoparticles in the
base fluid and that the thermal conductivity ratio increases with increased addition of nanoparticles.
Overall, the results suggest that GNP/Fe2O3 hybrid nanofluids could be used in various industrial
applications to improve the heat transfer and energy efficiency of systems.

Keywords: hybrid nanofluids; graphene nanoplatelets; iron oxide; thermal conductivity; viscosity;
heat transfer efficacy

1. Introduction

Modern machinery and many industrial applications employ traditional cooling fluids
such as water, engine oil and glycols for heat transfer applications. The creation of incredibly
effective heat transfer devices is greatly influenced by the thermophysical properties of
these fluids. However, these fluids exhibit low to modest thermal conductivity (λ), which
led to the development of nano-solid-liquid suspensions aimed at improving the λ of
common heat transfer fluids. This nano-suspension was first created by Choi et al. in 1995
by adding copper nanoparticles into water [1]. Due to the extraordinary thermal and flow
characteristics that the nanofluid exhibits in comparison to those of traditional thermal
transportation medium [2–4], this unique fluid is the focus of considerable global research.
It is projected that nanofluids will be widely used in the future to improve a variety of
industrial applications.

Graphene, which is a carbonaceous nanomaterial, is one of the most promising ma-
terials for the preparation of nanofluids. This is due to its exceptional thermophysical
characteristics, including its great mechanical strength and impressive λ [2,5,6]. A wide
variety of other studies [7–9] on the thermophysical properties of graphene and other
nanomaterials have been conducted. However, in recent years, a new form of nanofluid
which comprises two or more different nanomaterials was created in a bid to improve
the thermophysical properties and save costs [10,11]. These nanofluids are known as
hybrid nanofluids.
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Borode et al. [12] studied the thermophysical properties of hybrid GNP/Al2O3
nanofluid of different particle size ratio in comparison to single GNP nanofluid. The
single GNP nanofluid was reported to exhibit a higher λ than the hybrid nanofluids.
Notwithstanding, hybridization of the nanofluid was found to reduce the µ of the single
GNP nanofluid, which subsequently caused an improvement in the natural convective
performance of the nanofluids. The λ and µ of Al2O3-Cu hybrid nanofluids with different
volume contents at room temperature were investigated by Suresh et al [13]. When com-
pared to water, they reported an increase of up to 12.11% and 115% in λ and µ, respectively.
Wole-Osho et al. [14] assessed the thermophysical properties of an alumina-ZnO hybrid
nanofluid with various mixture ratios for application in a photovoltaic thermal collector.
They noticed an increment in the λ and µ with all the addition of the hybrid nanomaterials
and with an increase in their nanomaterial loading. Giwa et al. [15] studied the µ and σ

of a MWCNT-Fe2O3 hybrid nanofluid. They observed an enhancement in the properties
with an increase in the nanomaterial loading. Adun et al. [16] investigated the effects
of temperature, volume concentration, and mixing ratios of alumina-ZnO-Fe3O4 ternary
hybrid nanofluids (THNF) on their λ and µ. Three THNF mixture ratios (1:1:1, 1:2:1, and
1:1:2) were synthesized at volume concentrations of 0.5%, 0.75%, 1%, and 1.25%, and all
experiments were conducted at temperatures between 25 ◦C and 65 ◦C. The results showed
that temperature and volume concentration significantly affected the thermophysical prop-
erties of the fluid, and the 1:1:1 mixture ratio had the highest λ enhancement of 36.018%.
Additionally, the 1:1:1 mixture ratio had the lowest viscosity, while the 2:1:1 THNF mixture
ratio had the highest viscosity.

The literature and a host of other studies [17–20] provide evidence that the thermo-
physical properties of base fluids will improve with the application of hybrid nanoparticles.
Thus, the thermophysical properties of graphene-based nanofluids can be further enhanced
through hybridization. However, as far as the authors are aware, little to no study has been
completed on the graphene-based ferrofluid.

This study aims to investigate the effect of concentration and temperature on the
thermophysical properties of a novel hybrid GNP/Fe2O3 nanofluid with a mixing ratio
of 50:50. To the best of the authors’ knowledge, no study has been completed using hy-
brid GNP/Fe2O3 nanomaterial. The choice of GNP/Fe2O3 in the formulation of a hybrid
nanofluid is based on the desired properties of the resulting fluid. GNPs have high thermal
conductivity and stability, making them attractive as heat transfer enhancers in nanoflu-
ids [2]. On the other hand, Fe2O3 nanoparticles are readily available and cost-effective
compared to other types of nanoparticles such as metals or carbon nanotubes [21]. This
makes them an attractive choice in the development of efficient and affordable nanofluids.
Additionally, Fe2O3 nanoparticles are magnetic [22], allowing for easy manipulation and
separation of the nanofluid using an external magnetic field. Fe2O3 nanoparticles are also
known to produce stable water-based nanofluids, which have been extensively studied in
the literature [23–25]. This suggests that incorporating Fe2O3 nanoparticles into a hybrid
nanofluid could improve its stability and overall performance. Therefore, the combination
of GNP and Fe2O3 in a hybrid nanofluid can potentially enhance its thermal conductiv-
ity and convective heat transfer while allowing for easy separation and reusability. The
stability of the nanofluids was evaluated using a visual observation approach and TEM
analysis. The study was performed for volume concentrations ranging from 0.1 vol% to
0.4 vol%. The temperature ranged between 15 ◦C and 40 ◦C for the thermal conductivity λ

measurement, while it ranged between 15 ◦C and 55 ◦C for the µ and electrical conductivity
(σ) measurements. Finally, a novel correlation was developed using regression analysis to
estimate the measured thermophysical characteristics of the hybrid nanofluid as a function
of temperature and concentration.

2. Materials and Methods

In this study, deionized water was used as the base fluid due to its higher λwater and
lower µwater compared to other base fluids such as ethylene glycol. The hybrid nanofluid
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was prepared using a mixture of GNP and nanomagnetic Fe2O3 with a weight ratio of 50:50.
The GNP nanomaterial with thickness of 15 nm and specific surface area of 50–80 m2/g
was acquired from Sigma Aldrich (DE), while the Fe2O3 with length of 10–30 µm and
external diameter of 10–20 nm was obtained from MKnano Company (CA). The hybrid
nanofluids were stabilized using SDS surfactant obtained from Sigma Aldrich (DE) at a
nanoparticle/surfactant ratio of 1:1. Equation (1) was used to compute the weight of the
nanomaterials (ϕ).

ϕ =
ωGNP(

m
ρ )GNP

+ ωFe2O3(
m
ρ )Fe2O3

ωGNP(
m
ρ )GNP

+ ωFe2O3(
m
ρ )Fe2O3

+ (m
ρ )water

(1)

where ω, m, ρ is the weight fraction, mass and density of the nanoparticle, respectively.
The hybrid nanofluids were prepared by first dispersing the nanoparticles and sur-

factant in deionized water using a Q-700 Qsonica ultrasonic agitator for an optimum time
to ensure proper dispersion. During the agitation process, the nanofluid was placed in
a water bath (LAUDA ECO) with a set temperature of 20 ◦C to avoid overheating and
evaporation. Further, the stability of the nanofluid was monitored using visual observation
technique and TEM. To achieve stable hybrid nanofluids, the sonication time needed to
be optimized. The pH and σ are useful properties for determining the critical micelle
concentration (CMC) of the surfactant used in nanofluid preparation [15]. The CMC is
the point at which surfactant molecules form micelles that can stabilize nanoparticles in
the nanofluid [26]. The CMC is identified as the inflection point in the pH and σ curve
for varying sonication time. In this study, the optimum sonication time was determined
by monitoring the pH and σ of the hybrid nanofluid for different sonication times at an
ambient temperature as shown in Figure 1. A point of inflection was observed for the two
properties at 45 min to indicate the optimum sonication time used to prepare all the hybrid
nanofluid used in this study.
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Figure 1. pH and electrical conductivity as a function of ultrasonication time.

The hybrid nanofluids were characterized by measuring their µ, λ and σ using a Vibro-
viscometer (SV-10), KD-2 Pro meter, and EUTECH electrical conductivity meter (CON700),
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respectively. The µ and σ were measured for a temperature range between 15 ◦C and 55 ◦C,
and a water bath (LAUDA ECO) was used to regulate the temperature. Additionally, the λ

was measured at a temperature range between 15 ◦C and 40 ◦C.
The electrical conductivity meter was calibrated using the calibration fluid provided

by the manufacturer, and the standard fluid was measured three times at room temperature
to obtain an average value of 1414 µS/m, which was found to be close to the manufacturer’s
specified value of 1413 µS/m. The reliability of both the viscometer and KD2Pro Meter
was assessed by measuring their µ and λ and comparing them to the established standard
values for water found the literature.

To ensure accurate measurement of the thermophysical properties (P), potential
sources of error were identified, including the measurement of the weight of nanomaterials
and surfactants (W), volume of water (V), and temperature (T). These errors were accounted
for by using Equation (2) to estimate the uncertainty (e) associated with the properties.

e (%) = ±

√(
∂P
P

)2
+

(
∂W
W

)2
+

(
∂V
V

)2
+

(
∂T
T

)2
(2)

The degree of uncertainty associated with the measurement of σ is ±2.06%, while for
λ and µ, it is ±2.12% and ±2.07%, respectively.

3. Results and Discussion
3.1. Nanofluid Stability

Figure 2 displays the TEM micrograph of the GNP/Fe2O3 hybrid nanofluid. The
homogenous dispersion of the GNP and Fe2O3 nanomaterials is clearly evident in the
micrograph. To demonstrate the nanofluids’ improved stability, other stability evaluation
techniques, including visual and µ measurement techniques, were employed. The pho-
tographic image of the nanofluids after 4 days is presented in Figure 3. To validate the
stability, the µHNF was also monitored for 24 h, as illustrated in Figure 4. It is evident that
the nanofluid with 0.1 vol% and 0.3 vol% maintains average stability over a period of 24 h
due to the negligible changes in the µHNF over the examined duration.
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3.2. Viscosity

A fluid’s dynamic viscosity is the key component that determines how it behaves
and travels in close proximity to solid boundaries. Additionally, it demonstrates a consid-
erable influence on the pressure drop and pumping efficiency in any industrial system.
Figure 5 shows the results of a measurement of the viscosity (µHNF) of a GNP/Fe2O3
hybrid nanofluid at volume concentration of 0.1–0.4% and temperatures of 15–40 ◦C. Con-
sidering the changes in µHNF at various volume concentrations, it can be seen that adding
GNP/Fe2O3 nanoparticles at a steady temperature increases the µHNF.

Whilst also analyzing the changes in µHNF at various temperatures as shown in
Figure 6, it is easy to see that, for a given volume fraction, the µHNF declines as temperature
rises. The increase in temperature accelerates the Brownian motion of fluid molecules,
which is what causes the µHNF to lower. By increasing the frequency of molecular collisions
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as the velocity increases and decreasing the intermolecular interactions, µHNF lowers.
Because temperature enhances the Brownian motion, there is an inverse relationship
between temperature and µHNF.
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The µHNF is decreased as a result of the lessening of intermolecular forces. In other
words, µHNF decreases as temperature increases. Another explanation is that when the
temperature rises, the distance between molecules in the base fluid and the nanoparticles
shortens, thus, reducing µHNF and flow resistance. This study outcome is well-supported
and validated by the existing literature [12,27,28].

The relative dynamic viscosity (µrelative) is presented in Figures 7 and 8 as a function of
concentration and temperature, respectively. Figure 7 shows that there is an augmentation
in the µrelative with an increased addition of hybrid nanoparticles in the nanofluids. This
observation is well-supported by the existing literature [15,16,21]. This increase in µrelative
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could be attributed to the build-up of some agglomerates with a rising concentration
within the nanofluid. Figure 8 shows a slight diminution in µrelative with an increase in
temperature from 15 ◦C to 20 ◦C. However, an increase in temperature above 20 ◦C results in
an increase in the µrelative. According to this study, a µ increment of 3.22–8.77%, 4.30–10.53%,
6.45–12.28% and 8.60–15.79% was observed for the hybrid nanofluid with GNP/Fe2O3
loading of 0.10, 0.20, 0.30 and 0.40 vol% respectively at 15–40 ◦C.
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3.3. Thermal Conductivity

The thermal conductivity (λHNF) of a hybrid GNP/Fe2O3 nanofluid at volume frac-
tions of 0.1–0.4% was assessed at temperature of 15–40 ◦C. The outcomes are shown in
Figures 9–12. Figure 9 shows that at steady temperature the λHNF is increased in com-
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parison to the base fluid by the addition of the hybrid nanoparticles in the base fluid.
Additionally, as the volume percentage of nanoparticles grows, the surface-to-volume ratio
rises. This process ultimately causes the λHNF coefficient to rise significantly.
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Additionally, when the volume fraction grows, there are more intermolecular colli-
sions between molecules, which increases the amount of temperature effects on the λHNF
coefficient. The effect of temperature is further illustrated in Figure 10, as the λHNF is
augmented at a higher temperature. The primary causes of the increase in fluid λHNF
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with temperature are Brownian motion and collisions between nanoparticles [29]. This
augmentation can also be attributed to improved heat transfer at particle-fluid interface.

The thermal conductivity ratio (λratio) is presented in Figures 11 and 12 as a function of
concentration and temperature, respectively. Figure 11 shows that there is an augmentation
in the λratio with an increased addition of hybrid nanoparticles in the nanofluids. This
increase could be attributed to the build-up of some agglomerates with a rising concentra-
tion within the nanofluid. Figure 12 shows a slight diminution in λratio with an increase in
temperature from 15 ◦C to 20 ◦C. However, an increase in temperature from 20 ◦C to 30 ◦C
results in an increase in the λratio before it declines as the temperature is increased to 40 ◦C.
The λratio is influenced by the intermolecular forces between the nanoparticles and the
base fluid. When the temperature is raised from 15 ◦C to 20 ◦C, the intermolecular forces
between the nanoparticles and the base fluid start to weaken due to thermal motion and
vibrations of the particles, which causes a reduction in λratio. However, as the temperature
is further elevated from 20 ◦C to 25 ◦C, the Brownian motion of the nanoparticles becomes
more significant, leading to better dispersion and contact between the nanomaterial and
the base fluid. As a result, the intermolecular forces increase, leading to an increase in λratio.
At higher temperatures above 30 ◦C, the λratio starts to decrease again due to the formation
of agglomerates and the decrease in intermolecular forces caused by the increased thermal
motion of the particles. This behavior is commonly observed in nanofluids and is attributed
to the complex interplay between the thermal energy, Brownian motion, and intermolecular
forces between the nanoparticles and the base fluid. It is important to note that the exact
reasons for the observed trends in λratio may depend on several factors, such as the type
and size of the nanoparticles and the experimental conditions. Therefore, further research
may be needed to fully understand the underlying mechanisms.

According to this study, a thermal conductivity augmentation of 6.36–10.85%,
8.29–11.45%, 8.94–13.35% and 10.30–16.83% was observed for the hybrid nanofluid with a
nanoparticle loading of 0.10, 0.20, 0.30, and 0.40 vol% respectively at 15–40 ◦C. The λHNF
results and trends of this study are well supported and validated by existing studies [12,30,31].

3.4. Electrical Conductivity

Although it has not received much attention, σ is a crucial feature for the technical
application of nanofluids. Figures 13 and 14 depict the effect of concentration and tempera-
ture, respectively on the electrical conductivity of the GNP/Fe2O3 hybrid nanofluid (σHNF).
The figures show that, when compared to water, all nanofluids have a better σHNF than
water. Similar to the λHNF observation, the σHNF increases linearly with concentration for
a constant temperature. The improvement in σHNF is facilitated by the formation of the
electrical double layer (EDL) on the surface of the hybrid nanoparticle when dispersed in
deionized water. The formation of the EDL is impacted by the polarity of water, which ad-
vances the growth of charges on the hybrid nanofluid’s surface and subsequently transfers
charges into the nanofluid solution.

As shown in Figure 14, the σHNF of the GNP/Fe2O3 hybrid nanofluid also rises with
an increase in the nanoparticle loading, following a similar pattern to that of the thermal
conductivity. The temperature-induced augmentation could be ascribed to the fact that
an elevated temperature makes ions more mobile, subsequently augmenting the σHNF.
This improved ion mobility can be attributed to the Brownian motion of the nanomaterials
in the base fluid, which can enhance the contact between particles and result in more
efficient electrical conduction paths. This increased Brownian motion can also disrupt
the electric double layer surrounding the particles, resulting in a decrease in the electrical
resistance and an increase in the σHNF. In addition, the temperature elevation results in
a reduction in the µHNF, which subsequently improves the mobility of the nanoparticles
and promotes their suspension stability in the fluid. This can facilitate the formation of
conductive pathways between the particles, leading to an increase in σHNF. The increase in
σHNF with increasing nanoparticle loading and temperature is consistent with previous
studies [7,12,30] on the electrical properties of nanofluids.
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The σratio is presented in Figures 15 and 16 as a function of concentration and tem-
perature, respectively. It can be observed that there is a linear increase in σratio with an
increase in concentration and temperature. At constant temperature of 15 ◦C, the σwater
is augmented by 108.97% with the addition of 0.1 vol% GNP/Fe2O3 nanoparticle up to
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300.38% for 0.4 vol%. Moreover, with a nanomaterial loading of 0.1 vol%, the σHNF is
increased from enhancement of 108.97% at 15 ◦C up to 119.86% at 55 ◦C. The maximum
enhancement was observed to be 351.26% for 0.4 vol% hybrid nanofluid at 55 ◦C.
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3.5. Heat Transfer Efficacy

To evaluate the cooling effectiveness or heat transfer efficacy of the hybrid nanofluid,
the idea of properties enhancement ratio (PER) is utilized [32]. The PER of nanofluids is
typically calculated based on the λHNF and µHNF, which are key parameters governing the
heat transfer performance of the fluid. The PER can be calculated using Equation (1) [33].

PER =
(µrelative − 1)
(λratio − 1)

(3)

It is important to note that hybrid nanofluids have high potential for heat transfer when
the PER value is below 5, while a nanofluid with a PER value higher than 5 demonstrates
poor thermal performance [32]. Thus, a lower PER value indicates better heat transfer
performance for nanofluids as a cooling medium.

In Figure 17, the PER of the hybrid nanofluids is illustrated as a function of volume
fraction and temperature. The results indicate that all the prepared hybrid nanofluids are
suitable as coolants, as their PER values are much lower than 5, with the highest value of
1.31 obtained for a GNP/Fe2O3 loading of 0.4 at 20 ◦C. This shows that an increase in the
concentration of nanoparticles raises the PER value. However, there is a reduction in the
PER value when the temperature is elevated. This could be attributed to the temperature-
induced reduction in µHNF and augmentation in λHNF due to Brownian motion. The low
PER values observed in this study indicate that GNP/Fe2O3 hybrid nanofluids are favrable
for high temperature applications.
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3.6. Correlation

Various models have been used to predict the thermophysical properties of nanoflu-
ids, but classical models may not be suitable for predicting the properties of advanced
nanofluids such as hybrid nanofluids [15,34–36]. Thus, new models are needed to accu-
rately predict the properties of these advanced nanofluids. In this study, the authors used
experimental data to develop prediction models for the thermophysical properties of the
hybrid nanofluids. Regression analysis was used to create correlations between volume
fraction, temperature, and the experimental data (λratio, µrelative and σratio) of the nanofluids,
allowing for predictions of these properties.
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Table 1 shows the correlation equation, Pearson correlation coefficient (R), the corre-
lation of determination (R2), and the root-mean-square error (RSME) developed for the
temperature-dependent λratio, µrelative, and σratio of GNP-Fe2O3 hybrid nanofluids at differ-
ent nanomaterial loading. All the correlations demonstrated high correlation coefficients,
with considerably low errors, as indicated by these variables in Table 1. The linear fitting
of the experimental and predicted values of the thermophysical properties are shown in
Figure 18A–C. The figures indicate that there is a strong correlation between the predicted
data and the experimental data for all the properties with minimal deviations as observed
in Figure 18A,B. It was noticed that the established relationship between µHNF and λHNF
was able to forecast the experimental results with a margin of deviation (MOD) within
a range from −2.14 to 2.99% and −2.08 to 2.07%, correspondingly. Similarly, the range
of difference between the predicted and experimental values of σHNF was found to be
between −5.14 and 4.35%.

Table 1. Correlation equation for the thermophysical properties of the GNP-Fe2O3 hybrid nanofluid.

Property Equation R R2 RSME

µrelative
µHNF
µWater

= 0.96360 + 0.2852ϕ + 0.001393T 0.91999 0.8464 0.015968
λratio

λHNF
λWater

= 1.01568 + 0.1625ϕ + 0.001811T 0.91291 0.8334 0.010666
σratio

σHNF
σWater

= 1.17200 + 7.1380ϕ + 0.007740T 0.99596 0.9919 0.072709
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4. Conclusions

This study investigated the impacts of concentration and temperature on the σHNF,
µHNF, and λHNF of GNP/Fe2O3 hybrid nanofluids. The findings showed that the σHNF,
λHNF, and µHNF were notably increased in comparison to the base fluid. The boost in electri-
cal conductivity was due to the creation of an electrical double layer (EDL) on the surface of
the hybrid nanoparticles, which was influenced by the polarity of water. The λHNF increase
was ascribed to the increase in the surface-to-volume ratio and the number of intermolecular
collisions between nanoparticles. Brownian motion and collisions between nanoparticles were
identified as one of the primary causes of the increase in λHNF with temperature.

Furthermore, the µHNF was found to increase with the addition of nanoparticles at a
steady temperature, while it decreased with an increase in temperature due to the lessening
of intermolecular forces. The increase in µrelative with an increase in concentration was
attributed to the formation of some agglomerates within the nanofluid. In addition, the re-
gression formula developed to establish the relationship between σHNF, λHNF, and µHNF as
a function of temperature and concentration corresponds well with the experimental data.

Overall, the results suggest that GNP/Fe2O3 hybrid nanofluids have excellent thermal
and electrical conductivity properties, which make them suitable for various industrial
applications such as heat transfer fluids, lubricants, and coolants. However, the study also
highlights the importance of careful consideration of the concentration and temperature
effects on the properties of nanofluids, as they can significantly impact the performance of
the fluid in various applications.
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