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Abstract: Latent variable models can effectively determine the condition of essential rotating machinery without
needing labeled data. These models analyze vibration data via an unsupervised learning strategy. Temporal
preservation is necessary to obtain an informative latent manifold for the fault diagnosis task. In a temporal-
preserving context, two approaches exist to develop a condition-monitoring methodology: offline and online. For
latent variable models, the available training modes are not different. While many traditional methods use offline
training, online training can dynamically adjust the latent manifold, possibly leading to better fault signature
extraction from the vibration data. This study explores online training using temporal-preserving latent variable
models. Within online training, there are two main methods: one focuses on reconstructing data and the other on
interpreting the data components. Both are considered to evaluate how they diagnose faults over time. Using two
experimental datasets, the study confirms that models from both training modes can detect changes in machinery
health and identify faults even under varying conditions. Importantly, the complementarity of offline and online
models is emphasized, reassuring their versatility in fault diagnostics. Understanding the implications of the
training approach and the available model formulations is crucial for further research in latent variable model-
based fault diagnostics.

Keywords: Condition monitoring; unsupervised learning; latent variable models; temporal preservation; training
approaches

Abbreviations
BPFO Ball pass frequency for the outer race
C-AIM Center for asset integrity management
CCR Cumulative contribution rate
CD Condition deviance
CI Condition interval
CM Condition monitoring
dB Decibel
DFT Discrete Fourier transform
FIR Finite impulse response
GAN Generative adversarial network
HI Health indicator
ICA Independent component analysis
IMS Intelligent maintenance systems
LHI Latent health indicator
LVM Latent variable model
PCA Principal component analysis
PD Path dependent
PI Path independent
PPCA Probabilistic principal component analysis
RMS Root mean square
SASE Synchronous average of the square envelope
SE Square envelope
SES Square envelope spectrum
SMSE Synchronous median of the square envelope
SNR Signal-to-noise ratio

SRICA Spectrally regularized independent component
analysis

SSA Singular spectrum analysis
VAE Variational auto-encoder

I. INTRODUCTION
Condition monitoring (CM) is essential for proactively
managing and maintaining critical industrial assets, such
as wind turbines and ball mills, where downtime can induce
significant operational losses [1–3]. Decreased asset per-
formance impacted by changes in an asset’s instantaneous
health condition requires interventions driven by machine
CM approaches [4–6]. Inferring the condition of rotating
machinery is achieved through informative CM data that
capture deviations in the internal health state [7]. Common
CM data include temperature measurements [8,9], acoustic
measurements [10,11], oil lubricant measurements [12,13],
vibration measurements [14,15], and multi-sensor measure-
ments [16,17].

Among such measurement types, vibration data pro-
vide an instantaneous asset representation useful for cap-
turing cyclic phenomena and serve as a robust basis for
capturing fault signatures representative of rotating machin-
ery [3,15,18]. Hence, vibration-based approaches are prom-
inent for gearbox CM [5,19].

Within vibration-based CM, signal processing and
learning-based methodologies represent two distinct do-
mains of active academic and industrial practitioner interest
[20]. Such methodologies, in principle, enable CM by
facilitating a transformation of the raw vibration data
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into a diagnostic-rich representation to guide maintenance
decision-making. This is achieved through health indicators
(HIs), which must contain enhanced diagnostic information
to improve the CM process. Effective HIs enable effective
fault diagnosis and prognosis [4,21,22]. Therefore, devel-
oping or extracting relevant HIs is crucial. A general
workflow of vibration-based CM is present in Fig. 1.
The CMworkflow presented in Fig. 1 identifies the multiple
stages contained within the CM life cycle. First, vibration
data are measured and stored for an asset using sensors.
Then, HIs are constructed to enable accurate fault diagnosis
and prognosis. Finally, informed maintenance decisions are
made based on actional insights gleaned from the diagnosis
and prognosis steps.

For vibration-based CM, signal processing methodol-
ogies develop HIs by enhancing the prevalence of fault
signatures nested within vibration data. This is achieved
through time domain indicators [18,23], time-frequency
analysis [24–27], spectral analysis [5,28], cyclostationary
analysis [29,30], or signal enhancement strategies [31–34].
Conversely, learning-based methodologies use statistical,
machine, and deep learning-based approaches to accom-
plish CM [21]. In general, learning-based methods offload
the complexity of fault signature enhancement to a model to
perform fault diagnosis and prognosis [4,21].

In conventional CM applications, learning-based mod-
els are applied in various learning settings: (i) supervised
learning [35–37], (ii) transfer learning [38–41], and (iii)
unsupervised learning [42,43]. Supervised learning is a
popular learning-based setting used to automatically iden-
tify fault signatures to classify different potential fault
states, e.g., Huang et al. [44].

For a supervised learning approach, data labeling is a
restrictive requirement [21,45]. Unsupervised learning ap-
proaches, e.g., latent variable models (LVMs), can perform
CMwithout labeled fault data [20,21,45]. These approaches
capture intrinsic vibration data representations and are used
for downstream health state monitoring tasks, e.g., Booyse
et al. [42]. Feature extraction, as highlighted in Fig. 1, is
performed by the LVM to further automate the detection of
fault signatures [42]. Conventionally, vibration-based CM
with LVMs uses temporal non-preserving approaches,
i.e., where the time within the sensor is collapsed, and only
record time, i.e., the chronological order of the recorded
vibration data, is preserved [43]. Moreover, data recon-
struction-based techniques can only be used to perform
LVM-based anomaly detection to detect asset health state
deviations [45]. Hence, a temporally non-preserving setting
restricts the pertinence of LVMs in vibration-based CM and
limits LVMs to anomaly detection operations [45]. Encour-
agingly, recent advancements demonstrate the importance

of temporal preservation in enhancing LVM interpretabil-
ity, which is essential to enable effective anomaly detection
and fault diagnosis when using LVMs [43]. Temporal
preservation ensures that the temporal characteristics of
the vibration data are preserved in the extracted HIs,
enabling both increased analysis flexibility from the addi-
tional time structure and the use of the latent manifold for
CM. This increased capacity to detect damage, isolate the
fault condition, and perform fault trending encapsulates the
elements of fault diagnosis [6,43,46]. Furthermore, tempo-
ral preservation leads to latent health indicators (LHIs) that
better characterize fault signature mechanisms in the LVM
latent manifold [47].

In this study, two LVM training approaches are con-
trasted – offline and online. These approaches are con-
trasted in their ability to extract HIs that can be used in CM
applications. The offline training approach involves static
model parameter estimation from historical vibration data
[42,43,47] by assuming and using an existing historical
healthy dataset [42,48,49]. Alternatively, the online training
approach dynamically adjusts the model parameters in real
time, potentially enhancing fault diagnostics through con-
tinuous model adaptation. Moreover, offline training de-
couples the model estimation and data evaluation step,
while online training performs both simultaneously. Impor-
tantly, online training is foundational to many signal pro-
cessing strategies, e.g., blind deconvolution [34,50], band
demodulation [33,51,52], and online monitoring [53,54],
but is less common in LVM-based CM applications. Hence,
this investigation studies these training strategies’ efficacy.
Particularly, this work focuses on how different training
approaches impact the latent manifold’s utility for CM.
Consequently, we consider and investigate a CM scenario
where the distribution of the healthy data is not known a
priori through a reference dataset. This comparative analy-
sis will reveal which training approach better captures data
fault signatures essential for accurate LVM-based CM. The
context of this study within the vibration-based CM work-
flow is captured in Fig. 1.

To facilitate a comparison between LVM training
approaches, this study employs a probabilistic principal
component analysis (PPCA) model [47,55], referred to as
the PPCAh model, to represent offline LVMs trained on
assumed healthy, historical data. In contrast, online training
examines the evolution of intrinsic data features through
record time. This makes it possible to use and apply a new
class of LVM algorithms. Two domains for LVMs are
considered in this work: (i) reconstruction-focused LVMs,
which aim to maximize the variance explained in observed
vibration data via latent decompositions that capture
variance-centric data components [42,56–58], and (ii)

Fig. 1. A general overview of the vibration-based CM workflow from the sensors that record the vibration data to the final maintenance
decision-making step. The position of this study is demonstrated within this workflow. Learning-based methods for HI construction are
considered in this study.
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interpretation-focused LVMs, which seek an informative
latent manifold driven by statistical independence and non-
Gaussianity [56,59–61]. Note that the PPCAh model is
considered a reconstruction-focused LVM.

LVMs from both domains seek an informative latent
manifold but measure informativeness uniquely. More
specifically, reconstruction-focused models seek a latent
manifold to maximize the variance captured within the
observed data. Alternatively, interpretation-focused models
seek to recover the underlying components in the original
vibration data. This provides a level of interpretability
whereby these models aim to recover components contrib-
uting to the original signal. Recovering the original com-
ponents enables the interpretation of these components’
characteristics and potential sources. This is suitable for
vibration data from rotating machinery as the vibrations
from different components are typically additive [62]. In the
online training approach, considering reconstruction-
focused and interpretation-focused LVMs is crucial, as
maximal variance does not always equate to the most
informative fault signature extraction strategy. Further-
more, non-Gaussianity, a key property in signal processing
for signal enhancement, has attracted much attention for its
effectiveness in detecting damage in rotating machinery
[15,34,63].

The consideration and context of temporal-preserving
LVMs in vibration-based CM for this study are demonstrated
in Fig. 2. The LVM encoder and decoder operate as latent
feature extractors and reconstructors. From the two feature
spaces produced by these two LVM components, i.e., the
latent manifold and the reconstructed vibration data, respec-
tively, LHIs and HIs can be computed [42,47]. This study
uses these LHIs and HIs to contrast offline and online
temporal-preserving LVMs. For LVMs developed using
offline or online training, only one training approach is

applied to a given LVM. Figure 2 demonstrates that offline
LVMs are implemented using a historical dataset, while
online LVMs iteratively update the encoder and decoder
parameters for each observed vibration signal. To enable the
comparison of the considered offline and online LVMs in a
fault diagnosis setting, temporal preservation is used [43].
Temporal preservation yields informative indicators by pre-
serving sensor time, thereby enhancing both the indicators
and the LVM analysis setting. This produces HIs and LHIs
with a time dependency, as demonstrated in Fig. 2.

Various approaches related to offline and online LVMs
have been used in the literature. In the domain of offline
training, Booyse et al. [10] demonstrated the practicality of
two reconstruction-focused LVMs in an offline setting,
namely generative adversarial networks (GANs) [64] and
variational auto-encoders (VAEs) [58] in the anomaly
detection setting. Alternative LVM formulations have
been considered by Hu et al. [65], while Marx and Gryllias
[66] investigated the implications of incorporating prior
failure information using a numerical supplementation
approach to introduce augmented failure data.

In the online training domain for reconstruction-
focused methods, prominent interest has been placed in
using singular spectrum analysis (SSA) techniques to
decompose a Hankel matrix of vibration data into a sum
of variance-weighted rank-one matrices [67]. The SSA
decomposition process is variance-driven [68] and strongly
correlates with signal processing theory [69,70]. Recent
works, e.g., [71–73], have explored and developed meth-
odologies to improve the adoption of variance-based
decomposition processes in vibration-based CM. In the
online training domain for interpretation-focused methods,
ICA-based procedures, e.g., [74], are prevalent and have
been demonstrated to extract signal information with abun-
dant fault diagnostic information.

Fig. 2. The temporally preserved LVM-based pipeline used to extract HIs and LHIs for vibration-based CM applications. Note that the
latent manifold is set toℝ2 with an explicitly disentangled time variable t, i.e., sensor time. Temporal preservation ensures that the HIs and
LHIs are functions of sensor time. The LVM training approach, i.e., the LVM implementation procedure, directly affects the LVM
parameters (θ and ϕ) of the data encoder fθ and the latent decoder gϕ, respectively. One of two training approaches is applied to LVMs:
offline or online. For offline training, the parameters are estimated using a reference healthy dataset. In contrast, online training iteratively
estimates the LVM parameters using the ith vibration data record. We reserve the subscript of the variable h for the offline training
approach and the variable i specifically for the dependency on record time in the online training approach to simplify the notation in this
document. All variable notations are clarified in Section II.
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In this work, PPCA is used as an online reconstruction-
focused LVM, while an independent component analysis
(ICA)-based methodology [60,75,76], particularly spec-
trally regularized ICA (SRICA) [77], which incorporates
spectral regularization to avoid duplication of latent infor-
mation, exemplifies online interpretation-focused models.
These models are pivotal in computing LHIs from the latent
manifold [47], with LHI quality hinging on the manifold’s
ability to represent fault signatures. This study contrasts
these online LVMs with the offline PPCAh model to
evaluate the impact of LVM formulations on fault diagnosis
effectiveness. The research contributes by:

1. Comparing temporally preserving reconstruction-
focused and interpretation-focused LVMs for HI
extraction in CM applications.

2. Critically assessing the implications of various LVM
training approaches, highlighting the complementary
nature and utility of online settings for CM.

3. Utilizing two experimental datasets with different fault
signatures to demonstrate the complementary strengths
and weaknesses of both offline and online LVMs.

The layout of this paper is as follows: Section II
elaborates on the considered LVM formulations and con-
structed HIs within the context of vibration-based CM. A
comparative evaluation using a bearing fault dataset follows
in Section III, which is paralleled by an analogous analysis
using a gear fault dataset in Section IV. Finally, Section V
draws conclusions using the findings from Sections III and
IV, and gives recommendations for future work.

II. LATENT VARIABLE METHODS
In this section, the principal LVM methodologies used in
this work are discussed, all data pre-processing steps are
given, and the HIs and LHIs used are described. Focus is
given to the form of the offline and online reconstruction-
focused LVMs and the online interpretation-focused LVM.

A. BACKGROUND

LVMs represent a probabilistic framework which describes
the data distribution pðxÞ, where x ∈ X � ℝD, using some
unobserved latent variables z ∈ Z � ℝd, where d ≤ D. The
marginal distribution pðxÞ, often referred to as the model
evidence, is given by

pðxÞ =
ð
z
pðx,zÞdz: (1)

In common LVM applications, the joint distribution
pðx,zÞ is assumed to factorize

pðx,zÞ = pðxjzÞpðzÞ, (2)

where pðxjzÞ is the conditional generative distribution and
pðzÞ is a prior distribution over z. To infer the posterior
distribution pðzjxÞ for the latent variables given some
observed data, Bayes’ rule is used

pðzjxÞ = pðxjzÞpðzÞ
pðxÞ : (3)

Different strategies represent the LVM formulation,
each constituting a unique interpretation of the general
LVM objective. Typically, an encoding transition function
f θ∶χ → z and a decoding transition function gϕ∶z → χ are

used to parametrize the mapping from x to z and vice versa.
These functions represent the transfer of information
between the data space and the latent manifold, and the
parameters of these functions are estimated to allow the
LVM to generate data and capture the intrinsic properties in
the data [57]. This work develops and investigates encoding
and decoding transition functions for offline or online
training approaches, as demonstrated in Fig. 2. Thus,
they depend on a reference dataset or record time and
are denoted by f θh and gϕh

or by f θi and gϕi
, respectively.

In the domain of LVMs, there are two primary for-
mulations: explicit and implicit. In explicit LVM formula-
tions, assumptions are made regarding the form of the
distribution of interest for explicit parametrization,
e.g., PPCA [55], which assumes linear Gaussian distribu-
tions, or VAEs [58], which assume nonlinear Gaussian
distributions. Note that the linearity of the model refers to
the parametrization of the encoding and decoding transition
functions used for mapping from x and z and vice versa, not
the form of the chosen distribution. In implicit LVM
formulations, a stochastic procedure is defined to generate
data and no distribution assumptions are directly made
except for the form of the prior pðzÞ, e.g., GANs
[64,78]. Typically, LVMs are reconstruction-focused,
whereby they are primarily concerned with sample genera-
tion, and work has been done to improve the performance of
these models [79–83].

In this work, two linear LVM formulations represent
methods from the reconstruction-focused and interpreta-
tion-focused LVM. Thus, the encoding and decoding tran-
sition functions represent an affine linear function. For the
considered LVMs, both transition functions are available to
ensure that the latent manifold and the reconstructed data
space are accessible. Each technique will be briefly dis-
cussed in turn.

B. RECONSTRUCTION-FOCUSED LVMS

The first LVM used in this work is PPCA, wherein principal
component analysis (PCA) operates as a maximum likeli-
hood solution for the LVM formulation [57]. This model is
used as the reconstruction-focused LVM developed using
both offline and online training. For the PPCA model, the
prior distribution is assumed to be pðzÞ = N ðzj0,IÞ, repre-
sents an isotropic Gaussian distribution. The generative
process for PPCA is expressed as

x = Wz + μx + ϵ, (4)

where μx represents the first moment of x, and
ϵ∼N ðϵj0, σ · IÞ is a zero-mean isotropic Gaussian variable.
Equation (4) implies that the generative distribution pðxjzÞ
follows a Gaussian distribution. The posterior distribution
pðzjxÞ for the PPCA model is given by

pðzjxÞ = N ðzjM−1WTðx − μxÞ, σ−2MÞ, (5)

whereM = WTW + σ2 · I. The maximum likelihood solu-
tion for W and σ2, presented in Ref. [55], shows the latent
encoding transformation as

z = diag

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ1 − σ2

p
λ1

, · · · ,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λd − σ2

p
λd

!
UT

d ðx − μxÞ, (6)

where Ud ∈ ℝD×d = ½u1, · · · ,ud� represents the eigenvec-
tor matrix of the covariance matrix C = Ex∼pðxÞfxxTg
arranged in descending order based on the eigenvalues
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(λ) of C. Equation (6) represents the mean of pðzjxÞ and can
be identified as a scaled version of the PCA latent transfor-
mation z = UT

d ðx − μxÞ [57]. In the offline training scenario,
the PPCAh model parameters are obtained using a reference
set of observed vibration data signals. For the online
training approach, the PPCAmodel parameters are obtained
for each sequentially ordered vibration signal xiðtÞ,
i ∈ ½1,N�. The offline PPCAh model is used as a baseline
to evaluate the performance of the online LVMs. This
comparison is necessary to evaluate the implications of
online training in an LVM-based fault diagnostics context.

C. INTERPRETATION-FOCUSED LVMS

The second LVM used in this work is an ICA methodology
based on the negentropy-based ICA formulation proposed
in Hyvärinen [38]. This model is used as the interpretation-
focused LVM and is developed using online training. The
noiseless ICA generative model is given by

x = Az, (7)

where A ∈ ℝD×d. In this ICA formulation, the latent vari-
ables are enforced to be independent, i.e.,

pðzÞ =
Yd
j=1

pðzjÞ, (8)

and the latent variables are assumed to be non-Gaussian
[75]. Statistical independence implies that the individual
latent variables are maximally informative, i.e., provide no
useful information to other latent variables. The encoding
transformation to obtain the latent variables is represented
by

z = Wx, (9)

where W ∈ ℝd×D = ½w1, · · · ,wd�T represents a matrix of
component vectors. Conventionally, A is unknown, and
ICA methodologies exploit proxy criteria to represent the
ICA transform without assuming the probabilistic form of
the generative model [75]. A popular ICA methodology
uses an approximation of negentropy [84] as a measure of
non-Gaussianity to estimate the ICA model parameters.
Non-Gaussianity is a key requirement to enforce statistical
independence and obtain proxy measures for the latent
manifold features to guide the LVM parameter estimation
process. The aversion towards Gaussianity for interpreta-
tion-focused methods is readily motivated by the affine
property of an isotropic Gaussian distribution [57]. From
this property, it may be impossible to distinguish between
latent variables that deviate by a simple latent transforma-
tion, e.g., a rotation, which produces infinitely many com-
binations of Gaussian latent variables that satisfy the
independence property [57].

In Ref. [77], the issue of source duplication in single-
channel time-series applications, discussed in the work of
Hyvärinen [36] and Davies and James [42], is addressed via
the addition of a spectral regularization term which enforces
the spectral representations of the vectors in W to be
orthogonal. The methodology from Ref. [77] uses a regu-
larized optimization algorithm applied to the negentropy
approximations from Ref. [84] to estimate the SRICA
model parameters. The non-quadratic exponential function
is used in this work to approximate negentropy as it is a
robust estimator [60,75].

In this work, the SRICA model is used to represent an
interpretation-focused LVM developed using the online
training approach and is compared to PPCA within the
context of the online training approach and to the PPCAh
model in the context of the offline training approach. The
data pre-processing steps used in this work are discussed in
the following section. Appendix A establishes an important
connection between the considered LVM models and ex-
isting signal processing literature.

D. DATA PROCESSING

Given a signal xi½n�, where n � Z+ = f1, · · · ,Lg and L is
the length of the signal, an initial pre-processing step is
required to represent the raw vibration signal, which enables
LVM model parameter estimation for LVM-based CM. In
this work, a data Hankelization step, sometimes referred to as
a truncated Toeplitz matrix, is used to obtain a Hankel matrix

Xi =

2
6666664

xi½1� · · · xi½Lw�
xi½Lsf t� · · · xi½Lsf t þ Lw�

xi½2 · Lsf t� · · · xi½2 · Lsf t þ Lw�
..
. . .

. ..
.

xi½Lsf t · ðLT − 1Þ� : : : xi½Lsf t · ðLT − 1Þ þ Lw�

3
7777775
,

(10)

where Lw is the window length, Lsf t is the shift parameter,

and LT =
j
Lw
Lsf t

k
+ 1 represents the number of rows in

Xi ∈ ℝLT × Lw [42,47]. The rows of Xi represent samples
of the data vector x ∈ ℝLw , i.e., D = Lw. The pre-processing
steps required for LVMs developed under the offline training
approach are discussed in Ref. [47]. The pre-processing steps
related to the online training approach are discussed in this
section. After the Hankelization step, a standard pre-proces-
sing strategy is to center the columns of Xi, ensuring that the
components of x are zero-mean. This is given by

�Xi = Xi − 1μTi , (11)

where μi ∈ ℝLw is a column vector of the feature-wise means
of Xi and 1 ∈ ℝLw is a constant vector with elements 1 [47].
Note that the data is not standardized in this work as
standardization coupled with online training may remove
any inter-record variance useful for condition inference. For
the SRICA methodology, a pre-whitening step is used to pre-
process the data matrix �Xi further. Pre-whitening is a useful
processing step to reduce the approximation complexity
required to obtain the vectors w of the independent compo-
nent matrix W [59]. Pre-whitening is a pre-processing strat-
egy that removes any second-order correlations in �Xi and is
given by a linear transformation via

~x = UDL
−1=2
D UT

D
�X, (12)

where �x ∈ ℝLw is a column vector stored in the rows of �Xi,
~x ∈ ℝLw is the whitened variable, UD ∈ ℝLw×Lw is the full
rank eigenvector matrix of the data covariance matrix

Ci = Ef�x �xTg [57], and L−1=2
D ∈ ℝLw×Lw = diagðλ−1=21 , · · · ,

λ−1=2Lw
Þ is a diagonal matrix of the inverse square root of the

eigenvalues λ from C. To enable fault diagnostics for the
interpretation-focused LVM, the implications of the pre-
whitening step must be accounted for, as this limits the
ability to perform fault trending through record time. The
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implication of pre-whitening is discussed in Ref. [59]. PPCA
has no such issue as the centering process given in Equa-
tion (11) does not remove any scale variations in the data. In
this work, we use a simple re-scaling of the latent components
for the interpretation-focused LVM via the latent kurtosis,
i.e.,

z = diagð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kurtðz1Þ

p
, · · · ,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kurtðzdÞ

p
ÞW~x, (13)

where kurtð·Þ represents the sample kurtosis. This re-scaling
ensures that the prominence of specific underlying features in
the latent manifold can be compared through record time.
The use of the square root was made based on its usage in
signal processing works, e.g., Ref. [85], and in our investiga-
tions, we found that this scaling gave better results. The
choice of scaling used is not proposed to be optimal and may
require further research. The optimization of the scaling
function is outside the scope of this work.

E. LATENT HEALTH INDICATORS

A transformation of the latent and reconstructed data space
is required for CM purposes to infer the condition of the
asset of interest based on a sequential set of vibration
signals [47]. This work uses a simple set of statistical
distance-based LHIs from Ref. [47]. The dissimilarity-
based sub-class is used in this work as it requires no access
to healthy latent manifold representations, and the metrics
are simple to calculate. The subset of LHIs used was
selected from a broader range of potential indicators for
temporal-preserving LVMs. This approach enables this
work to maintain a focused investigation and refine our
analysis. A more comprehensive exploration of HIs and
LHIs will be pursued in future research. The first HI is the
reconstruction error

HIð1Þ½t� = 1
D
· kxt − x̂tk22, (14)

which represents the mean squared error between the data
sample xt and its reconstruction x̂t. Note that the variable
t ∈ ½0,LT − 1� refers to an integer representation of the
sensor time captured by the signal segments in the data
Hankelization step discussed in Section II.D and
HIð1Þ½t� ∈ ℝ is a scalar. Temporal preservation exploits
this sensor time to enhance the information obtained for
the condition inference task [43]. The first LHI considered
in this work is the normalized Euclidean distance indicator
given by

LHIð1ÞPIjPD½t� =
1
d
· kztþ1 − ztk2, (15)

where the path-independent (PI) and path-dependent (PD)
latent manifold inference settings capture different latent
manifold deviation mechanisms [47], zt = 0 in the PI
setting, and d is the dimensionality of z. Sensor time-
independent LHIs are identified as PI, while sensor time-
dependent LHIs are identified as PD. For LVMs developed
using the offline training approach, the dimensionality of
the latent manifold is constant and denoted as d = dh. For
LVMs developed using the online training approach, the
latent manifold may be a function of the observed vibration
data and is denoted as d = di. The second LHI considered in
this work is the normalized Manhattan distance

LHIð2ÞPIjPD½t� =
1
d
· kztþ1 − ztk1, (16)

which evaluates the L1 norm. The third LHI considered in
this work is the normalized Canberra distance

LHIð3ÞPD½t� =
1
d
·
Xd
j=1

jzt+1,j − zt,jj
jzt+1,jj + jzt,jj

, (17)

which represents a weighted version of Equation (16). The
fourth LHI considered in this work is

LHIð4ÞPIjPD½t� =
1
d
· kztþ1 − ztk∞, (18)

which represents the normalized Chebyshev distance or
uniform norm k · k∞. The final LHI considered in this work
is the cosine distance

LHIð5ÞPD½t� =
1
d
· cos−1

�
zTt+1zt

kzt+1k2 · kztk2

�
, (19)

which represents a latent dimensionality normalized LHI in
a non-Euclidean coordinate system [47]. Note that all
latent indicators are scalars through sensor time, i.e.,

LHIð1−5ÞPIjPD½t� ∈ ℝ. The HIð1Þ½t� and LHIð1−5ÞPIjPD½t� metrics are
used to infer the instantaneous asset health condition and
represent deviations in the data space and the latent mani-
fold in the presence of some fault condition. For the
remainder of this study, the notation identifying the depen-
dence on sensor time t is dropped for all HIs and LHIs for
brevity.

III. EXPERIMENTAL BEARING
DATASET STUDY

This work uses two experimental datasets representing dif-
ferent gearbox failure mechanisms and operating condition
states to compare the offline and online LVMs. The first
considered dataset is an experimental bearing fault dataset
with constant operating conditions. For this investigation, the
properties of interest are the ability of the considered HIs and
LHIs to detect and trend the damage and localize the faulty
component of interest, i.e., to perform fault diagnosis [6,86].
This comparison approach serves to fully understand the
implications of the choice of training approach and LVM
formulation without proposing a method to use the multiple
HIs simultaneously for fault diagnosis. We leave the inves-
tigation potential of the full CM problem for future work.

The experimental setup for the first dataset is outlined
in Section III.A, followed by the LVM specifications in
Section III.B. Section III.C details the diagnostic metrics
used to evaluate and compare the HIs and LHIs from the
considered LVMs. The results of the first experimental
dataset are presented in Section III.D.

A. BEARING STUDY: EXPERIMENTAL
SETUP

The first experimental dataset considered is one made
available by the NSF I/UCR Center for Intelligent Mainte-
nance Systems (IMS) [87]. The dataset consists of bearing
housing accelerometer data captured for three run-to-failure
endurance tests. The raw vibration data corresponding to
the first bearing of the second run-to-failure endurance test
is investigated in this work.

A schematic of the experimental setup is depicted in
Fig. 3. The setup includes a shaft supported by four bearings
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powered by an electric motor using a belt. During the
experimental lifespan, the shaft experienced a constant
speed of 2000 rpm and a constant load of 26.7 kN. 984
one-second-long raw vibration data signals were recorded
and made available over the experimental lifespan. The
vibration data was recorded at a sampling rate of 20480 Hz
[87]. The fault condition that manifested during the experi-
mental lifespan is an outer race bearing fault. The ball pass
frequency for the outer race (BPFO), i.e., the frequency of
an outer race bearing fault condition [15], for the selected
IMS dataset is 236 Hz. This frequency is highlighted as the
outer race bearing failure is known a priori [88]. Figure 3(b)
visualizes the raw vibration signals’ root mean square
(RMS) and kurtosis for the considered IMS dataset.

B. BEARING STUDY: LVM SPECIFICATIONS

The LVMs trained on the available 984 raw vibration
signals used the Hankelization-based pre-processing step
given in Equation (10) with a window length of Lw = 256
and a shift of Lsf t = 1. In our initial investigations, we found
that an increased window length gave minimal performance
improvements for the PPCA and PPCAh models, while a
larger window length impacted the performance of the
interpretation-focused model. We believe this is related
to the issue identified by Antoni [51] for kurtosis-based
methods.

For the PPCA and PPCAh models, the cumulative
contribution rate (CCR)

CCR =

P
d
j=1 λjP
D
j=1 λj

, (20)

is used to define the size of the latent space dh and di,
respectively. The CCR defined in Equation (20) represents
the fraction of preserved data variance relative to the total
data variance [57]. The CCR for the PPCAmodel was set to
CCR = 80%, while the dimensionality of the SRICA
model was set to d = 20. The first 10% of the available
data was used to train the PPCAh model with a CCR
of 80%.

To validate the choice of latent dimensionality for the
SRICA model, the excess kurtosis of the latent components
for signals at 25%, 50%, and 75% of the experimental
lifespan is investigated for a latent dimensionality range of
d = 2 to d = 128 in increments of d = 2j, where

j = 1, · · · ,7. Figure 4 presents the latent excess kurtosis
for the considered latent dimensionality range. The latent
component kurtosis at 25% and 50% of the experimental
lifespan contains little non-Gaussian information of signifi-
cant interest. However, at 75% of the experimental lifespan,
there are prominent components of interest, with a notice-
able elbow in the latent kurtosis around d = 4. Hence, a
latent dimensionality larger than d = 4 is sufficient to allow
the SRICA model to capture interesting components of the
raw vibration data in the online training setting.

C. BEARING STUDY: PERFORMANCE
METRICS

To compare the performance of the considered LVMs, two
diagnostic metrics are computed using the constructed HI
and LHI signals. These metrics provide insight into the fault
diagnostic capacity of the considered LVMs and assess
their ability to extract diagnostic information from the
vibration data. These metrics compare the ability of the
extracted temporal-preserving HIs and LHIs for fault detec-
tion and localization and demonstrate their ability to per-
form fault trending.

The RMS of the HIð1Þ and LHIð1−5ÞPIjPD signals is com-
puted as the first diagnostic metric to compare offline and
online LVMs in the offline and online training settings. The
signal-to-noise ratio (SNR) of the square envelope spectrum
(SES) is used as a second diagnostic metric to quantify the
considered indicators’ sensitivity to the bearing fault pres-
ent. The square envelope (SE) of a signal x½n� is given by

SE½n� = jx½n� + j · Hðx½n�Þj2, (21)

where j =
ffiffiffiffiffiffi
−1

p
represents the imaginary unit and Hð·Þ

represents the Hilbert transform [89]. The SES is given by

SES½k� = jDFTfSE½n�gj (22)

where k represents the cyclic frequency and DFTf·g is the
discrete Fourier transform (DFT). Schmidt et al. [73]
propose a targeted methodology to determine the SNR
based on the SES

SNRSES =
XNh

h=1

maxfSES½k�gk∈Ah

medianfSES½k�gk∈Bh

, (23)

which represents the prominence of specific spectral com-
ponents and integer harmonics against the noise floor in the

(a) Experimental setup schematic. (b) Statistical properties.

Fig. 3. A schematic of the IMS experimental setup and the statistical properties of the raw vibration signals. The statistical properties of
the raw vibration signals in (b) are log-scaled for visualization purposes. Please note that these figures are best viewed in color.
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SES within specific cyclic frequency bands. The median of
the SES estimates the noise floor within a specific frequency
band. The set Ah represents the indices associated with the
hth harmonic of the cyclic frequency αc of interest within a
tolerance range

Ah = fkjk ∈ N, αc · ðh − τAÞ ≤ αk ≤ αc · ðh + τAÞg,
(24)

where τA, 0 ≤ τA ≤ 1, represents a cyclic frequency toler-
ance control parameter [33]. The set Bh

Bh = fkjk ∈ N, αc · ðh − τBÞ ≤ αk ≤ αc · ðh + τBÞg,
(25)

represents the indices of the frequency band with a band-
width centered around the hth harmonic of αc where
τB represents the bandwidth parameter, where
0 ≤ τA < τB ≤ 1, that captures the SES components
between the integer harmonics of the cyclic frequency.
Figure 5. visually demonstrates the SNR calculation based
on the SES. For this investigation, the first three integer
harmonics, i.e., Nh = 3, are used as targeted features to
compute the SNRSES.

The diagnostic metrics considered in this work are
dimensionalized, so we non-dimensionalize them by stan-
dardizing them using the first 10% of the available experi-
mental data [91,92]. This ensures that the responsiveness of
the considered indicators can be critically compared with-
out scale bias.

A condition deviance (CD) point is identified for the
considered diagnostic metrics using a condition interval
(CI) calculated using

CI = μm � 3 · σ, (26)

where the thresholds’median μm and the standard deviation
σ are estimated using a percentage of the diagnostic metric
values related to the asset in a healthy condition. An
abnormal CD point outside the condition interval is identi-
fied when the average of five consecutive metrics exceeds
the CI bounds. The purpose of the CD points is to enable the
identification of health state deviation from a prescribed
reference condition. In doing so, a judgment can be made on
the ability of the indicators from the considered LVMs to
characterize changes in the asset health state and assess their
sensitivity to damage. This sensitivity is coupled with the
choice of HI and LHI [47].

D. BEARING STUDY: EXPERIMENTAL
RESULTS

This section presents the results of the bearing fault inves-
tigation. The results are organized as follows: Section
III.D.1 displays the outcomes for the first diagnostic metric,
Section III.D.2 shows the results for the second diagnostic
metric, and Section III.E provides a comparative result
analysis and discusses the implications of the consid-
ered LVMs.

(a) 25% of the experimental lifespan. (b) 50% of the experimental lifespan.

(c) 75% of the experimental lifespan.

Fig. 4. The latent excess kurtosis for the SRICA models trained at different states of the IMS dataset lifespan. The x-axis of (a), (b), and
(c) are log2 scaled to aid with visualization. Please note that these figures are best viewed in color.
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1. DIAGNOSTIC METRIC ONE: RMS. Figure 6 presents
the standardized log10ðRMSÞ of the condition indicators for
the considered offline and online LVMs. Indicator stan-
dardization was performed using an estimate of the indica-
tor mean and variance from the first 10% of the available
indicator signals. The indicators from the PPCA model, as
presented in Fig. 6(a) and Fig. 6(b), exhibit clear sensitivity
to the bearing damage present in the considered IMS
dataset. Both the PI and PD settings provide fault-sensitive
indicators for the PPCA model. Using the identified CD
points, the PPCA model is responsive to the onset of
damage around record 533, and the LHIð3ÞPD metric, the
normalized Canberra distance, is the least sensitive to the
onset of damage. The reconstruction error, HIð1Þ, exhibits
the strongest sensitivity for the PPCA model, which in-
dicates that residual fault information is present in the
reconstructed data space. It is also evident that the consid-
ered latent indicators undergo strong fluctuations from the
baseline condition towards the end of the experimental
lifespan.

Figure 6(c) and Fig. 6(d) present the results from the
SRICA model. Compared to the PPCA model results, the
indicators from the SRICA model have less sensitivity in
the RMS of the condition indicator signals, except for the
HIð1Þ metric. The PI setting for the SRICA model produces
indicators that exhibit better sensitivity to the bearing
damage present in the IMS dataset than the PD indicators.
In comparing the CD points from the PPCA model to those
from the SRICA model, it is evident that the PPCA PI
indicators have better sensitivity to the onset of bearing
damage present in the data when using the RMS as a
diagnostic metric. As with the PPCA model, the HIð1Þ
metric from the SRICA model exhibits stronger sensitivity
in the RMS of the condition indicator signal. The PD setting
for the SRICA model is noticeably insensitive to the onset
and progression of damage, whereby the CD points are
located around the strong change in condition present
around record 700 (as observed in Fig. 3(b)) is detectable.
This suggests that the latent scaling procedure proposed in
Equation (13) is less optimal for the IMS dataset.

The RMS of the PPCAh indicator signals, as presented
in Fig. 6(e) and Fig. 6(f), all exhibit sensitivity to the onset
of bearing damage except for the HIð1Þ metric, the recon-
struction error, which shows weakened sensitivity and
poorer CD identification. The LHIð3ÞPD and LHIð5ÞPD metrics
from the PPCAh model, the normalized Canberra distance
and the Cosine distance, exhibit more significant fluctua-
tions once the fault occurs, indicating that the latent

manifold response to damage captured by these metrics
is more complex and this causes a drop below the baseline
RMS metric range. In a comparative analysis of the offline
and online reconstruction-focused LVMs under consider-
ation, both the PPCA model and the PPCAh model exhibit
the ability to provide distinct RMS deviations to the onset of
the localized bearing damage. However, the sensitive in-
dicators are not consistent between the two methods, e.g.,
HIð1Þ and LHIð2ÞPI (the reconstruction error and the normal-
ized Manhattan distance, respectively) in the PI setting and
LHIð3ÞPD and LHIð5ÞPD (the normalized Canberra distance and
the normalized Cosine distance) in the PD setting. This
emphasizes the need to use multiple indicators as the best
indicators are not known a priori. This is supported by the
results from the SRICA model, which exhibits better sen-
sitivity to the onset of damage from the PI indicators than
the PD indicators. This emphasizes the need to consider the
PI and PD traversal settings when computing LHIs.

The models trained using the online training approach
perform well compared to the PPCAh model trained on
reference data. Hence, it is necessary to quantify further the
implications of the LVM training procedure and LVM
formulation used to determine the sensitivity to the bearing
fault present in the data.

2. DIAGNOSTIC METRIC TWO: SNR. In Fig. 7, the in-
dicator’s standardized log10ðSNRÞ value is visualized for the
considered offline and online LVMs. The SNR sensitivity
investigation is necessary to motivate and quantify the fault
isolation characteristics of the considered HI and LHI condi-
tion indicators. The condition indicators from the SRICA
model, presented in Fig. 7(c) and Fig. 7(d), exhibit clear
sensitivity to the IMS outer race bearing fault. The indicators
from the PI setting are more sensitive than those from the PD
setting and have less noise. However, the indicators from the
PPCAmodel presented in Fig. 7(a) and Fig. 7(b), exhibit weak
sensitivity. This difference is also discernible via the identified
CD points; the PPCAmodel only provides CD detection after
record 600. Figure 7(e) and Fig. 7(f) indicate that the PPCAh
model has improved sensitivity to the fault present in the data
over the PPCAmodel. Still, the PI indicators from the SRICA
model exhibit the best sensitivity overall. For the PPCAh
model, only the LHIð4ÞPIjPD metrics, the normalized Chebyshev
distance, can identify a CD point before the 600th record. This
contrasts the results observed in the RMS of the condition
indicators presented in Fig. 6, thereby highlighting the impli-
cation of the characteristics of the considered offline and
online LVMs and the choice of diagnostic metric.

Fig. 5. The procedure to calculate the SNR using the SES for a cyclic component set size is Nh = 3 [90].

164 Ryan Balshaw et al.

JDMD Vol. 3, No. 2, 2024



Figure 7(c) indicates that the LHIs from the SRICA
model in the PI setting all contain information directly
related to the fault of interest. The CD points all identify the
change in condition around record 533. In the PD setting, as
seen in Fig. 7(d), only the LHIð3ÞPD indicator, the normalized
Canberra distance, from the SRICA model is insensitive to
the fault condition present in the data and no CD point is
obtained for this indicator. However, the SNR diagnostic
metric for the LHIs from the SRICAmodel in the PD setting
has more noise, indicating that the PI setting is better suited
to CM tasks for the IMS dataset using this LVM formula-
tion. For the PPCAmodel SNR results, seen in Fig. 7(a) and
Fig. 7(b), the HI and LHI indicators exhibit clear insensi-
tivity to the change in condition around record 533 and only
show a noticeable CD detection around record 700.

For the PPCAh model, CD point identification occurs
earlier than record 700, indicating that although the model
has strong indicator deviations in its RMS, the bearing
fault frequency is less pronounced. Hence, the SRICA
model is observed to be the most sensitive to the bearing
damage on the IMS dataset, and the characteristics
of the LVM better isolate the fault component of interest
within the latent manifold. The PPCA and PPCAh models,
in comparison, fail to accurately represent the fault
component of interest in the LHIs. This indicates
that maximal variance is a useful tool for detecting
deviations due to the presence of a fault, but it may
only sometimes be useful for inferring the underlying
fault condition. This indicates the importance of online
interpretation-focused methods, as they may provide an

(a) PI indicators - PPCA.

(c) PI indicators - SRICA. (d) PD indicators - SRICA.

(e) PI indicators - PPCAh. (f) PD indicators - PPCAh.

(b) PD indicators - PPCA.

Fig. 6. The standardized log10ðRMSÞ of the indicators for the offline and online LVMs applied to the IMS dataset. The indicators are
grouped by LVM formulation and path traversal setting for comparison purposes and log-scaled before standardization for visualization
purposes. PI refers to path-independent LHIs, while PD refers to path-dependent LHIs. Please refer to Section II.E for more information.
Please note that these figures are best viewed in color
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increased capacity to identify the fault signature present
in the vibration data.

E. BEARING STUDY: LVM COMPARISON

The results observed in Fig. 6 and Fig. 7 now provide
evidence of the complementarity of the reconstruction-
focused and interpretation-focused LVMs in the online
training setting. The PPCA model responded to the change
in the variance of the raw vibration signals over record
number but cannot strongly isolate the faulty components of
interest in the considered indicators. The SRICA model, in
comparison, has weaker sensitivity in the RMS of the
considered indicator signals but effectively captures and
isolates the bearing fault of interest in the considered PI and

PD indicators. This implies that the interpretation-
focused LVM is better suited to capture the fault condition
present in the IMS dataset. At the same time, the recon-
struction-focused LVM is better suited to detecting the
change in the variance of the raw vibration signals due
to the fault.

Additionally, a comparison of the metrics from the
PPCAh model developed using a reference dataset high-
lights the implications of the training scheme coupled with
the model formulation. Together, the presented findings
confirm that the online training setting emphasizes impor-
tant considerations surrounding the choice of formulation
for LVM-based fault diagnostics, and the comparison to the
PPCAh model highlights that the online training approach is
a useful LVM setting in CM applications.

(a) PI indicators - PPCA. (b) PD indicators - PPCA.

(c) PI indicators - SRICA. (d) PD indicators - SRICA.

(e) PI indicators - PPCAh. (f) PD indicators - PPCAh.

Fig. 7. The standardized log10ðSNRÞ was determined using Equation (23) of the indicator signal SES for the considered offline and
online LVMs applied to the IMS dataset. The indicators are grouped by LVM formulation and path traversal setting for comparison. The
SNRSES metric is determined using Equation (23). The results are log-scaled before standardization for visualization purposes. Please
note that these figures are best viewed in color.
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IV. EXPERIMENTAL GEARBOX
DATASET STUDY

The second considered dataset is an experimental gear fault
dataset, characterized by time-varying operating conditions.
For this investigation, the key performance metrics are the
capacity of the considered offline and online LVMs to
detect damage, identify the faulty component of interest,
and detect and trend the damage. i.e., to perform fault
diagnosis [6,86]. In Section IV.A, an overview of the
experimental setup is provided. Section IV.B details the
specifications of the considered LVMs, after that
Section IV.C presents the selected diagnostic metrics.
The results of the second experimental investigation are
presented in Section IV.D.

A. GEARBOX STUDY: EXPERIMENTAL
SETUP

The Center for Asset Integrity Management (C-AIM) lab-
oratory at the University of Pretoria, South Africa, made the
second experimental dataset available. The raw vibration
signals used in this section were obtained from the experi-
mental helical gearbox setup detailed in Fig. 8. The setup
includes an alternator, three helical gearboxes, and an
electrical motor. A total of 300 vibration signals were
recorded from a tri-axial accelerometer located behind
the center gearbox. Additionally, an optical probe and a
zebra tape shaft encoder with 88 angular increments were
used to record information related to the input shaft speed.
The vibration signals were recorded for 20 seconds at a
sampling rate of 25.6 kHz, while the optical probe recorded

data at a sampling rate of 51.2 kHz. The first 100 measure-
ments represent the gearbox in a healthy condition, after
which a gear tooth was manually seeded with damage, and
the setup was run for approximately 20 days until a gear
tooth failure occurred. The final 200 measurements were
obtained after the artificial fault was seeded, representing
the gearbox in an unhealthy condition. The gear of interest
at the point of fault introduction and after the experiments
were concluded is shown in Fig. 9.

The time-varying operating condition experienced dur-
ing the experimental lifespan is visualized in Fig. 10(a).
Time-varying operating conditions impede the CM task as
the instantaneous health state of the gearbox is intertwined
with information unrelated to the gear’s health state. The
raw vibration data also contains prominent impulsive infor-
mation for all recorded data, regardless of the gear health
state. This is attributed to unseen contact between the
gearbox casing and a floating bearing when axial shaft
loadings were applied to the shaft. The statistical properties
of the raw vibration signals are visualized in Fig. 10(b). The
impulsive components not corresponding to the gear tooth
fault further impede the CM task as prominent diagnostic
information is present but unrelated to the component of
interest.

B. GEARBOX STUDY: LVM
SPECIFICATIONS

The LVMs trained on the 300 raw vibration signals used a
window length of Lw = 512 and a shift of Lsf t = 1. In our
initial investigations, we found that the selected window
length improved performance for all the considered LVMs

Fig. 8. The experimental gearbox dataset setup.

(a) Gear condition – before. (b) Gear condition - after.

Fig. 9. The helical gear used to introduce localized gear tooth damage for the C-AIM gearbox dataset. (a) details the seeded gear tooth
failure before experiments were conducted for a damaged gearbox state, and (b) details the helical gear after experiments were concluded.
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when applied to the raw gearbox vibration data. The CCR
for the PPCA model was set to CCR = 95%, while the
latent dimensionality of the SRICA model was set to
d = 60. We found that increasing the CCR significantly
improved the performance of the PPCA model for the
experimental gearbox dataset. However, increasing the
CCR for the IMS dataset investigation did not yield a
positive performance improvement. This suggests that
the CCR is a sensitive parameter important to the perfor-
mance of reconstruction-focused LVMs for the fault diag-
nosis task. The first 10% of the available data was used to
train the PPCAh model with a CCR of 95%. To validate the
choice of latent dimensionality for the SRICA model, the
process described in Section III was used, and the latent
dimensionality was increased until d= 256. Figure 11 con-
tains the visualization of the kurtosis in this regard. The
latent source kurtosis approaches an elbow point around
d = 32. Hence, the selected latent dimensionality for the
SRICA model is suitable for capturing the non-Gaussian
components in the raw vibration data.

C. GEARBOX STUDY: PERFORMANCE
METRICS

Following the investigation performed in Section III, two
diagnostic metrics, computed for HI and LHI signals, are
used to compare the performance of the considered LVMs
in a fault diagnosis setting.

The synchronous median of the square envelope
(SMSE) [93] is used for the gearbox dataset investigation
to compare the considered offline and online LVMs. The
SMSE is not a diagnostic metric, but a post-processing
procedure to heighten the fault condition of interest in the
computed HI and LHIs signals. This is possible as a gear
tooth fault is assumed a priori for the second dataset. The
SMSE of the jth order tracked condition indicator signal
from the ith record is given by

SMSEjðϕ,ΦkÞ = medianðSEjðϕ,ΦkÞÞ (27)

where medianð·Þ represents the median statistic, ϕ ∈ ½0,ΦkÞ
refers to the angular position,Φk refers to the cyclic period,
and SEjðϕ,ΦkÞ is the order tracked SE of the jth condition
indicator signal. As the condition indicator signals are order

tracked, deviations related to the gear tooth fault are ex-
pected to be synchronous with the gear shaft rotation, i.e.,
Φk = 2π. The SMSE is an extension of the SE (SASE)
synchronous average and is more robust in the presence of
impulsive non-synchronous components [93]. Hence, it is
well suited for the investigation of the gearbox dataset.

As the gear fault is known a priori, the objective is to
ascertain the sensitivity of the condition indicators from the
considered offline and online LVMs to this fault. Two
diagnostic metrics are used to conduct such an investiga-
tion. First, the RMS of the region within the SMSE corre-
sponding to the gear tooth fault is used. Second, the SNR of
the SMSE signals is determined via

SNRdB
SMSE = 20 log

 
ASMSE
j,damaged

ASMSE
j,healthy

!
, (28)

where ASMSE
j,damaged and ASMSE

j,healthy represent the RMS of the
damaged portion and the healthy portion of the jth SMSE
signal is evaluated using the logarithmic decibel (dB) scale.
The SNRdB

SMSE metric is used to quantify how prominent the
fault component of interest is against the noise floor.
Figure 12 demonstrates the SMSE condition quantification
methodology used in this work for the experimental gear-
box dataset.

D. GEARBOX STUDY: EXPERIMENTAL
RESULTS

This section reports the findings of the experimental gear
fault investigation, with the results structured as follows:
Section IV.D.1 presents the results for the first diagnostic
metric, followed by the results from the second diagnostic
metric in Section IV.D.2. Finally, Section IV.E compares
and discusses the implications of the considered LVMs
based on the learnings from the results observed in
Section IV.D.1 and Section IV.D.2. Following the approach
used in Section III.D, the diagnostic metrics are standard-
ized, and a CD point is identified for each of the HIs and
LHIs to ensure that the indicators can be effectively com-
pared and investigated.

1. DIAGNOSTIC METRIC ONE: RMS. Figure 13 presents
the standardized RMS of the SMSEmetric for the indicators

(a) Input shaft operating conditions. (b) Dataset statistical properties.

Fig. 10. The operating conditions experienced by the input gear shaft and the statistical properties of the raw vibration data for the
gearbox dataset. It is evident from (b) that the operating conditions and the bearing-related impulsivity impede the condition inference
task. The excess kurtosis of the raw vibration data is strongly non-Gaussian, as seen in (b) throughout the experimental lifespan and is
highly leptokurtic. The fault origin point in (b) represents the separation between the measurements acquired from the healthy gearbox
and the measurements acquired from the gearbox with seeded damage. Please note that these figures are best viewed in color.
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used in this work. The PI indicators from the PPCA
model and the SRICA model, presented in Fig. 13(a)
and Fig. 13(c), both exhibit a clear variation in condition
from the manual fault origin point introduced at record 100.
However, theHIð1Þ metric, the reconstruction error from the
PPCA model erroneously identifies a CD point before
record 100, which indicates that the PPCA model has
some sensitivity to the non-stationarity in the data. The
HIð1Þ metric from the SRICA model exhibits weaker sen-
sitivity to the localized tooth damage, indicating that the
latent manifold is more sensitive to the fault condition
present in the data. The PD indicators from the PPCA
model and the SRICA model, presented in Fig. 13(b)

and Fig. 13(d), respectively, exhibit an increased sensitivity
to the non-stationarity in the data and less sensitivity to the
onset of gear tooth damage. For the PD indicators from the
PPCA model, this non-stationarity sensitivity is more pro-
nounced as CD points are identified before record 100.
Additionally, the LHIð3ÞPD metric, the normalized Canberra
distance, undergoes a decrease in value around record 100,
indicating that this metric decreases in magnitude around
the tooth fault location. As both LVMs developed using the
online training approach are responsive to the onset of gear
tooth damage, it can be concluded that the manifestation
mechanism for the gear tooth damage is both variance-
driven and non-Gaussian in nature.

Fig. 12. The procedure used to calculate the SNR of the SMSE signals for the gearbox dataset. The union of sets fhealthy1g and
fhealthy2g represent the noise floor of the SMSE, while the set ffaultyg represents the damaged portion of the SMSE.

(a) 25% of the experimental lifespan. (b) 50% of the experimental lifespan.

(c) 75% of the experimental lifespan.

Fig. 11. The latent excess kurtosis for the SRICA models trained at different states of the experimental gearbox lifespan. The x-axis of
(a), (b), and (c) are log2 scaled to aid with visualization. Please note that these figures are best viewed in color.
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Hence, both considered online LVMs can effectively
capture the variation in asset condition. This highlights the
complementarity of the considered online LVMs in a fault
diagnostic setting and enforces that the LVM formulation is
an important consideration for CM using the online training
setting. The performance of the PD indicators further high-
lights the implications of the considered HIs and LHIs used
in this work, as damage manifestation locality within the
facets of LVMs is not known a priori.

The PPCAh results presented in Fig. 13(e) and Fig. 13(f)
also indicate that the PI setting is better suited to the CM task
for the gearbox dataset as it captures less non-stationary
information and is more sensitive to the onset of damage. For

the PPCAh model, the CD point of the HIð1Þ metric occurs
before record 100, which indicates a clear sensitivity to the
non-stationarity in the healthy gearbox data. The RMS of the
PI indicators from the PPCAh model exhibits clearer sensi-
tivity to the onset of the gear tooth fault. The PD indicators
from the PPCAh model are more sensitive to the data non-
stationarity, identified via the erroneously identified CD
points and the clear variations in RMS metric value for
both the healthy and unhealthy gearbox data.

Hence, the ability to detect and identify an onset of gear
tooth damage is affected by the choice of training approach,
the LVM formulation used, and the choice of LHI. While
the RMS allows for an investigation into the discernability

(a) PI indicators - PPCA.

(c) PI indicators - SRICA.

(e) PI indicators - PPCAh. (f) PD indicators - PPCAh.

(d) PD indicators - SRICA.

(b) PD indicators - PPCA.

Fig. 13. The standardized RMS of the SMSE for the indicators from the considered offline and online LVMs applied to the gearbox
dataset. The indicators are grouped by LVM formulation and path traversal setting for comparison. In (a)–(f), the fault origin point is
indicated to mark when damage is present in the raw vibration data, enhancing the interpretability of the indicator metrics and their
corresponding CD points. This annotation enables a clearer understanding of the relationship between the considered indicators and the
onset of damage. Please note that these figures are best viewed in color.
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of the tooth fault, the calculation of the SNR in Equa-
tion (28) quantifies tooth damage sensitivity relative to the
noise floor, which naturally removes any potential sensitiv-
ity to non-stationarity in the data and can better quantify
damage detectability performance.

2. DIAGNOSTIC METRIC TWO: SNR. Figure 14 presents
the standardized SNR of the SMSE for the indicators used
in this work. The identification of the CD points now occurs
after record 100, and indicators with worsened sensitivity to
the onset of damage can be identified for the offline and
online LVMs. As the SNR represents the sensitivity of the
tooth fault region in the SMSE with respect to the noise
floor, it is possible to further compare the indicator re-
sponses from the considered offline and online LVMs. In a
comparison of the PI indicators presented in Fig. 14(a),

Fig. 14(c), and Fig. 14(e), the PPCA and SRICA models
exhibit diagnostic metric responses with similar sensitivity
to the gear tooth fault. However, the HIð1Þ metric from the
SRICA model, presented in Fig. 14(c), is less sensitive to
the onset of damage than the indicators constructed using
the latent manifold. The LHIð4ÞPD metric, the normalized
Chebyshev distance, response from the PPCAh

model, presented in Fig. 14(e), performs worse than the
other indicators due to the significant fluctuations in the
indicator value attributed to sensitivity to the data non-
stationarity.

The PI indicators from the latent manifold of the PPCA
and SRICA models, captured in Fig. 14(a) and Fig. 14(c),
respectively, have improved sensitivity to the onset of
damage over the PI indicators from PPCAh model, seen

(a) PI indicators - PPCA. (b) PD indicators - PPCA.

(c) PI indicators - SRICA.

(e) PI indicators - PPCAh. (f) PD indicators - PPCAh.

(d) PD indicators - SRICA.

Fig. 14. The standardized SNR of the indicator SMSE for the considered offline and online LVMs applied to the gearbox dataset. The
SNR is calculated with Equation (28), where Fig. 12 demonstrates the SNR calculation process. The indicators are grouped by LVM
formulation and path traversal setting for comparison. Please note that these figures are best viewed in color.
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in Fig. 14(e). This indicates that they have enhanced
separability between the fault and healthy regions in the
SMSE of the HI and LHI signals. This further emphasizes
the implications of the LVM formulation and the choice of
LVM training setting. In the case of the gearbox dataset, the
choice of offline or online training and the LVM formula-
tion used therein appears to have a less significant impact on
the early detection of damage onset compared to the IMS
dataset. However, there are still noticeable and identifiable
implications. Figure 14 indicates that the online training
setting is a useful setting for LVMs as there are clear
responses to the gear tooth fault, and this is substantiated
by comparing the results to those obtained from the
PPCAh model.

E. GEARBOX STUDY: LVM COMPARISON

In a comparison of the PD indicators for the considered
offline and online LVMs, presented in Fig. 14(b),
Fig. 14(d), and Fig. 14(f), the SNR results indicate that
most indicators are sensitive to the change in condition due
to the manual fault seeding process, but are in general less
sensitive than their PI counterparts. This enforces the
implications of the considered LHIs, as each latent manifold
extracts unique characteristics from the raw vibration data.
Furthermore, the SNR results help quantify the RMS results
seen in Fig. 13(b), Fig. 13(d), and Fig. 13(f), whereby the
prominence of the faulty component can be inferred relative
to the healthy region of the SMSE. By normalizing the RMS
results for the PD indicators, thereby removing the inclu-
sion of any per-record non-stationarity, it is possible to
quantify the sensitivity of the indicators from the considered
offline and online LVMs to the gear tooth fault. Thus, the
improvement in the PD indicator captured in the SNRdB

SMSE
results further highlights that the PD indicators are more
sensitive to data’s non-stationarity and less sensitive to the
onset of the gear tooth damage.

For the PPCA and PPCAh models, the LHIð3ÞPD and
LHIð5ÞPD metrics (the Canberra distance and the cosine
distance, respectively) have decreasing SNR trends,
which indicates that these metrics respond via a reduction
in magnitude around the gear tooth fault. This result was
only observable for the LHIð3ÞPD indicator when using the
RMS diagnostic metric for the PPCA model, as demon-
strated in Fig. 13(b). This indicates that the latent response
to the gear tooth fault is to project the anomalous data into
regions where the latent representations lie closer
together. The same observation can be made for the
metrics from the PPCAh model. This result emphasizes
the need for a two-sided threshold when using the in-
dicators. However, the metrics for the SRICA model are
insensitive to the onset and progression of the damage.
These results further highlight the complementarity of the
choice of training framework and LVM framework for
CM, whereby the offline and online LVMs exhibit
uniqueness in both the indicators sensitive to damage
and in the damage manifestation mechanism within the
latent manifold.

V. CONCLUSION
This work investigates offline and online training ap-
proaches for LVM-based fault diagnostics applied to vibra-
tion data. The LVMs considered in this work represent
reconstruction-focused and interpretation-focused LVM

formulations driven to obtain latent representations that
maximize the explained variance and the non-Gaussianity
from the observed vibration data. The considered offline
and online LVMs extract unique characteristics from the
raw data, and the offline and online training approaches
were used to ensure that the unique LVM characteristics
and implications can be investigated and compared for
LVM-based CM applications. A simple set of HIs and
LHIs was considered to investigate the sensitivity of the
offline and online LVMs as a tool to perform fault diag-
nostics in different gearbox fault conditions and to study the
implication of the online training approach for LVMs.
The results seen in this work demonstrate that:

1. Online reconstruction-focused and interpretation-
focused LVMs complement vibration-based condition
inference tasks using the online training approach. The
choice of online LVM formulation influences the
diagnostic information obtained for condition infer-
ence. Specifically:

a. The IMS dataset results indicate that while the recon-
struction-focused formulation is sensitive to the
change in the data due to damage and useful for early
damage detection, the interpretation-focused formu-
lation demonstrates an improved ability to identify
and isolate the fault type present in the data.

b. The gearbox dataset results emphasize that online
reconstruction-focused and interpretation-focused
LVM formulations possess a complementary capac-
ity to detect the gear tooth damage in the dataset.
This highlights the significance of the unique char-
acteristics inherent to the selected LVM formula-
tions and that their suitability to different potential
fault conditions is not predetermined.

2. The online training approach used in this work is a
useful LVM training setting, and the considered online
reconstruction-focused and interpretation-focused
LVMs developed using this approach are useful for
fault diagnostics. The choice of LVM training frame-
work provides different implications depending on the
considered dataset and LVM formulation used.

3. The choice of condition indicator for offline and online
LVMs is diverse. Hence, it is important to select
metrics that utilize the data space and the latent mani-
fold when applying LVMs. Furthermore, using multi-
ple LHIs for condition inference is beneficial, as the
optimal LHI for fault diagnosis purposes is unknown a
priori.

The two experimental datasets were used to investigate
the sensitivity of offline and online LVMs and the associ-
ated HIs and LHIs. The interpretation-focused LVM proved
better for isolating the bearing fault in the first dataset. For
the second dataset, the offline and online LVMs performed
equivalently in a fault diagnosis setting. The results suggest
a fault-type dependency when using reconstruction-focused
and interpretation-focused online LVMs. However, the
optimal choice of formulation for specific fault conditions
has yet to be discovered a priori. The diversity in LHI
performance across datasets emphasizes the need for mul-
tiple LHIs to capture the intricacies of damage manifesta-
tion within the latent manifold for accurate condition
inference. Hence, as the fault diagnosis task was used to
compare offline and online LVMs, it can be concluded that
the online training setting is a useful LVM training
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approach for reconstruction-focused and interpretation-
focused online LVMs in vibration-based fault diagnostics.
Furthermore, the choice of training approach and LVM
formulation is an important consideration in LVM-based
CM applications.

For future work, it is recommended that focus be given
to reconstruction-focused and interpretation-focused LVM
formulations with nonlinear transition functions. The im-
plications of online training must be further investigated
with the nonlinear LVMs as they may provide a more
expressive latent manifold, which may benefit the LVM-
based CM task. Additionally, the latent scaling approach
used in this work for the SRICA model requires further
investigation regarding its suitability to vibration-based CM
problems. Therefore, alternative scaling strategies should
be investigated and considered, or interpretation-focused
LVMs, which require no pre-whitening, should be consid-
ered. Moreover, alternative LHIs must be investigated for
online LVMs to further study the implications of online
training. Then, consideration of the full CM problem must
occur to assess further the implications of using temporal-
preserving LVMs. The automatic selection of the model
window length should also be considered in future inves-
tigations. Finally, further investigation into complex oper-
ating environments must occur to uncover the limits of the
considered offline and online LVMs. This will ensure that a
suitable level of attention can be given to the complex
operating environment problem to develop and improve
data-driven methodologies for vibration-based fault
diagnostics.
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APPENDIX A

RELATIONSHIP TO SIGNAL PROCESSING

This section demonstrates a simple connection between
existing signal processing work and the considered PCA-
based and negentropy-based ICA methods used in this
work. The purpose is to detail the characteristics of the
observed data that the considered methods extract and
highlight. This is important to the online training approach
as the LVMs extract information dynamically through
record time, responding to recorded data changes based
on their specific characteristics of interest.

The PCA objective function can be given as

max
uj

LPCAðujÞ = Ex∼pðxÞðuTj xÞ2 s:t: uTj uk = δjk , (29)

where δij represents the Kronecker delta function, and x is
assumed to be pre-processed using Equation (11). The PCA
represents the maximization of the variance of the jth

projection of the data x, i.e., the jth latent variable [94].
The PCA objective can be reformulated into a Rayleigh
quotient function RðC,xÞ for the symmetric covariance
matrix C and can be solved as an eigenvalue problem or
via the singular value decomposition of �X obtained using
Equation (11) [57].

The negentropy-based ICA objective function can be
represented as

max
wj

LICAðwjÞ=JðzjÞ≈c·ðEx∼pðxÞfGðwT
j xÞg−Eν∼pðνÞfGðνÞgÞ2

s:t:wT
j wk = δjk,

(30)

where JðzjÞ is the negentropy of the jth latent component,
Gð·Þ is a non-quadratic function, c ∈ R+ is an arbitrary
constant, ν∼N ð0,σ2νÞ is a standardized Gaussian variable
with variance σ2ν = Ez∼pðzjÞfðz − EfzgÞ2g = σ2zj , and x is
pre-processed using Equation (11) and Equation (12).
This objective function is presented in Hyvärinen [65]. A
fixed-point algorithm called FastICA was proposed to
estimate W [75].

The implication of the data Hankelization step in
Equation (10) for the considered online LVMs, for the
case where Lsf t = 1, is that the SRICA and PPCA compo-
nent vectors operate as a set of finite impulse response (FIR)

filters [75,76]. This demonstrates the strong correlations
between the LVMs used in this work and known signal
processing-based methodologies. First, consider the PCA
objective function given in Equation (29). It is trivial to
show, for vibration-based applications, that the optimal
solution for Equation (29) can be reformulated into

LPCAðujÞ = uTj Cuj = Efz2j g = λj, (31)

where the covariance matrix C = 1
N
�XT �X also represents the

auto-correlation matrix, ðλj,ujÞ is the jth eigenpair that
diagonalizes C and Efz2j g represents the power of the jth

latent signal. In this setting, the PCA objective seeks to
maximize the power of the filtered signal, and uj is an FIR
filter driven to capture components with maximal power.

Secondly, consider the ICA objective function given in
Equation (30). It is trivial to show that for the choice
GðuÞ = u4 Equation (30) becomes

LICAðwjÞ=ðEfz4j g−Efν4gÞ2=
�
E

��
zj−μzj
σzj

�
4
�
−3·σ4ν

�
2

= ðkurtðzjÞ−3Þ2,
(32)

where μzj = 0 and σzj = 1 as the data is assumed to be
centered and whitened, and c= 1. This represents the square
excess kurtosis of latent component zj. Hence, the ICA
objective seeks to maximize the non-Gaussianity of the
filtered signal by maximizing its kurtosis, or a generaliza-
tion thereof, andwj operates as an FIR filter that captures the
dominant non-Gaussian components of the signal. Hence, it
is shown that online LVM methodologies represent funda-
mentally different latent manifolds, and the learnt latent
components capture the sources of maximal power or non-
Gaussianity. However, unlike blind deconvolution [34] or
band demodulation [33] methodologies, which seek a
single transformation, i.e., d = 1, that maximizes some
measure, e.g., the L2/L1 norm [95], the considered linear
LVMs seek d latent variables, i.e., d latent transformations
that capture the intrinsic features of observed data in
alignment with their objective functions on the condition
that the sources be statistically independent.
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