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A B S T R A C T

The classification of molecules is of particular importance to the drug discovery process and several other
use cases. Data in this domain can be partitioned into structural and sequence/text data. Several techniques
such as deep learning are able to classify molecules and predict their functions using both types of data.
Molecular structure and encoded chemical information are sufficient to classify a characteristic of a molecule.
However, the use of a molecule’s structural information typically requires large amounts of computational
power with deep learning models that take a long time to train. In this study, we present an alternative
approach to molecule classification that addresses the limitations of other techniques. This approach uses
natural language processing techniques in the form of count vectorisation, term frequency-inverse document
frequency, word2vec and Latent Dirichlet Allocation to feature engineer molecular text data. Through this
approach, we aim to make a robust and easily reproducible embedding that is fast to implement and solely
dependent on chemical (text) data such as the sequence of a protein. Further, we investigate the usefulness of
these embeddings for machine learning models. We apply the techniques to two different types of molecular
text data: FASTA sequence data and Simplified Molecular Input Line Entry Specification data. We show that
these embeddings provide excellent performance for classification.
1. Introduction

The process of drug discovery is complex and consists of several
stages from target identification through to clinical trials. Machine
learning (ML) techniques have proven useful in several stages of drug
discovery and in the process of designing novel therapeutics (Deng
et al., 2022; Rifaioglu et al., 2019). An exemplary use of these tech-
niques is in molecular property prediction for use in high throughput
virtual screening (HTVS) (Oliveira et al., 2023). The goal of HTVS is
to filter through large libraries of molecules to find a reduced set of
candidates that exhibit favourable properties. Performing experimental
validation on a smaller set of candidate molecules can save time and
money.

Some of the most commonly used techniques in this space are
natural language processing (NLP) and deep learning (DL) (Arabi, 2021;
Jarada et al., 2020; Deng et al., 2022; Rifaioglu et al., 2019; Wu et al.,
2018). Many of the current methods rely on deep learning models and
three-dimensional structural data which results in increased computa-
tional cost, compute time and overall complexity. Our aim is to provide
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1 Yang Zhang, What is FASTA format?, 2023, https://zhanggroup.org/FASTA/.
2 RCSB Protein Data Bank, Homepage, 2023, https://www.rcsb.org/.

a readily reproducible and computationally efficient alternative. Our
approach prioritises simple and rapid implementation while minimising
resource-intensive calculations, making reproducibility a top priority.
Moreover, our method requires fewer software dependencies, hardware
requirements, and simplifies the setup of the environment. While we
acknowledge the invaluable contributions of existing deep learning
models utilising structural data, our goal is to provide an inherently
reproducible method that will provide a solid foundation for future
work and independent verification.

In this study, we predict the biophysical and physiological be-
haviour of small molecules, which typically consist of 20 to 100 atoms,
which can be expressed in the Simplified Molecular Input Line En-
try Specification (SMILES) data type (Weininger, 1988). In particular,
we predict blood–brain barrier penetration (permeability) (BBBP) and
qualitative binary binding interactions for a set of inhibitors of human
𝛽-secretase 1 (BACE) obtained from Moleculenet (Wu et al., 2018), a
benchmark created for evaluating ML techniques on molecular property
prediction. Additionally, to illustrate the versatility of our method, we
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focus on a protein classification task. Proteins are macromolecules, con-
sisting of 1000s of atoms, formed by one or more chains of monomers
termed amino acids. These biological molecules are vital to almost
every biological activity and are capable of a myriad of functions.
We predict the functional classification of proteins using their residue
sequence data in the form of FASTA data1 on the Structural Protein
Sequences (SPS) data set retrieved from the Research Collaboratory
for Structural Bioinformatics (RCSB) Protein Data Bank (PDB).2 We
solely make use of the available text data obtained from the FASTA
and SMILES files which represent the primary amino acid sequence of
protein molecules or the atoms comprising a small molecule, respec-
tively. We create embeddings of this molecular text data using count
vectorisation (CVec), term frequency-inverse document frequency (TF-
IDF), word2vec (Mikolov et al., 2013) and latent Dirichlet Allocation
(LDA) (Blei et al., 2003). While it is true that these methods have been
well explored within the field of NLP, we believe their application to
molecular text data, presents a novel approach. Particularly, using the
LDA topic probability vector as a feature vector. These embeddings
reduce the dimensionality of the data, transforming molecular text
data to the vector space, whilst keeping relative similarity between
observations in their transformed state.

The embeddings are then used for the protein classification and
molecular property prediction tasks, making use of three models: a
support vector machine classifier (SVM) (Boser et al., 1992), a naïve
Bayes classifier (NBC) and a neural network (NN) classifier. We eval-
uate the usefulness and limitations of the embedding techniques and
the ML classification techniques applied to the molecular text data.
These models can be improved through hyperparameter tuning in the
form of grid search and other techniques, which may be addressed
in future studies. The objective of this study is to demonstrate that
feature engineering can enhance baseline performance on these tasks
or achieve comparable results with significantly reduced complexity.
It is important to note that our study is not intended to compare our
approach with the latest achievements on the Moleculenet benchmark.
We want to make it clear that we do not utilise any structural data or
other molecular information. We also do not prioritise optimising our
models for classification tasks. Further, we do not pre-train our embed-
ding models or our classification models on data other than the training
data available for the dataset in question. Our main focus is to evaluate
reliable and reproducible embedding techniques for machine learning
classification tasks. To ensure fairness, we use identical models across
all embedding techniques for consistent comparison. Our evaluation is
based on SMILES and FASTA data to demonstrate the robustness of
our techniques. Additionally, we compare our techniques with simpler
benchmarks on the Moleculenet benchmark, without considering struc-
tural information. Our aim is to show that straightforward embeddings
such as ours can perform reasonably well on the benchmark when
paired with simpler and more explainable models. We did not deem it
fair to compare to techniques that were pre-trained on larger datasets
further, we simply could not replicate all of the alternative techniques
due to lack of reproducibility or lack of resources to pre-train on these
large datasets.

We provide a brief literature review (Section 2) which contextu-
alises these techniques applied to biological data and molecular text
data. A concise description of each technique that was utilised is
provided (Section 3) with a theoretical and mathematical formalisation
that describes the methodology used in this study. A description of the
data preprocessing (Section 4) and the details of the experiments con-
ducted for evaluating the use of the embeddings as ML feature vectors
are provided (Section 5). Section 6 provides conclusions relating to the
study.

2. Literature review

In general, DL and NLP are the main techniques that have been
applied specifically to molecular text data (Arabi, 2021; Jarada et al.,
2
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2020; Deng et al., 2022; Rifaioglu et al., 2019; Wu et al., 2018). As
mentioned previously, most of the approaches implemented to date
utilise either structural data3 or text-based molecular data (Bhatnagar
et al., 2022). Structural approaches use information and calculated
features based on the components of the three-dimensional structure
and chemistry of the molecule and, often, make use of geometric deep
learning models (Isert et al., 2023). Molecular text approaches use
data such as the SMILES representation of a molecule or the FASTA
representation of a protein/DNA/RNA sequence. Given that these data
are represented as text it is necessary to convert these representations
into numerical formats compatible with ML models. Several molecular
text-based embedding methods (Yang et al., 2018; Ibtehaz and Kihara,
2023) have shown promising results for protein classification and
molecular property prediction based tasks (Wu et al., 2003; Sarac et al.,
2008). Pre-trained transformer models such as ProtAlbert have been
used to predict protein sequence profiles (Behjati et al., 2022). Given
that embedding techniques for semantic text similarity measurement
have been effectively implemented for classical NLP tasks (Shahmirzadi
et al., 2019), it follows that NLP techniques can be extended to embed
molecular text data. Indeed, text-based embeddings have proven to be
useful when using both SMILES data (Wu et al., 2018; Kim et al., 2021;
Jaeger et al., 2018) and protein sequence data (Ibtehaz and Kihara,
2023; Yang et al., 2018). Interestingly, the embedding method that is
implemented can drastically affect the performance of a model given a
specific task (Shahmirzadi et al., 2019).

Commonly implemented global embedding techniques include CVec
and TF-IDF (Elkan, 2005). Furthermore, LDA is a widely employed
technique in NLP and can be employed as an embedding technique.
LDA, initially proposed for population genetics (Pritchard et al., 2000),
characterises each topic by a distribution over words, and documents
are represented as random mixtures over these latent topics (Blei et al.,
2003). To date, LDA has been used in protein-related prediction tasks
based on structural data such as protein function prediction and protein
folding prediction (Xiao et al., 2017; Schneider et al., 2017; Singh
et al., 2012). Using substructures of molecules as words (van Der Hooft
et al., 2016; Kikuchi and Kikuchi, 2021; Jaeger et al., 2018), LDA
has been successfully applied to structural data for protein structure
comparison (Shivashankar et al., 2011). Hence, it is evident that, LDA
applied to structural data can efficiently represent protein structures
and be utilised to compare these representations based on similarity.
LDA has also been utilised in the analysis of genetic sequence data
relating to gene expression (Yalamanchili et al., 2017). As such, this
observation suggests that LDA could be effectively applied to protein
sequence data for a number of tasks. Notably, support vector machines
have been shown to work well in conjunction with LDA (Chen and
Li, 2016). Additionally local embedding techniques (Jurafsky and Mar-
tin, 2021) using self-supervised learning have been used to learn a
semantic embedding of molecular text data (Kim et al., 2021; Jaeger
et al., 2018). Many of such self-supervised techniques are examples of
word2vec (Mikolov et al., 2013), a group of related NN models used
to compute continuous vector representation of a word. This approach
has been successfully applied to SMILES data to acquire embeddings
of molecular substructures (Jaeger et al., 2018). Both global and local
embeddings serve as a feature for many ML models, ranging from
classical linear models to modern deep learning techniques (Wu et al.,
2018; Li et al., 2023). These embeddings find diverse applications
including classification tasks such as property prediction (Kim et al.,
2021; Ibtehaz and Kihara, 2023; Wu et al., 2018).

3 Papers with Code, Molecular Property Prediction, 2023, https://
aperswithcode.com/task/molecular-property-prediction.

https://www.oreilly.com/library/view/applied-text-analysis/9781491963036/ch04.html
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3. Materials and methods

Biological molecules vary significantly in size, leading to data with
varying dimensions. In order to address variability in the lengths of the
molecular text data, we create embedding vectors of equal dimension
for every molecule. Word embeddings generate numerical vectors of
uniform dimensionality, encoding the meaning of data such that similar
text data are situated closer to each other within the vector space.
Consequently, each molecule is assigned a numerical vector represen-
tation of the same dimension, and the distance between these vector
representations indicates the degree of similarity between molecules.
CVec, TF-IDF, LDA and word2vec are all techniques capable of gen-
erating such uniform vector representations. Furthermore, embedding
techniques can be grouped into global and local embeddings which we
discuss briefly4 (Liang et al., 2018; Jurafsky and Martin, 2021), as well
as an overview of SVMs, NBCs and the NN architecture utilised in this
study.

3.1. Global embeddings

Global embeddings (Jurafsky and Martin, 2021) typically featurise
the entire composition of a document or molecule by utilising counts
or statistics at the document or molecule level.

3.1.1. Count vectorisation
CVec is a technique that transforms text data into numerical data

(Wallach, 2006; Zhang et al., 2010). A method of doing this is by
counting the occurrence of words in the document. For a molecule 𝐱,
the count vector can be expressed as [𝑥1,… , 𝑥𝑅], where 𝑅 is the total
number of residues or text items in the molecule (vocabulary size) and
𝑥𝑟 is the number of times molecular text item or residue 𝑟 appears
in molecule 𝐱. An n-gram model can also be used for CVec (Kondrak,
2005). An $n$-gram is a contiguous set of 𝑛 words from a sample of text
data. The use of 𝑛-grams on molecular text data may be very beneficial
as it can introduce relations such as combining an atom with the amino
acid residue it is a part of. Beyond this 𝑛-grams may also be beneficial
when applied to amino acid residues alone.

3.1.2. Term frequency-inverse document frequency
The TF-IDF is a statistic that measures the importance of a word

or item to a document or file that is in a text corpus (Elkan, 2005;
Salton and Buckley, 1988; Luhn, 1957), and it is one of the most widely
used weighting schemes for text data. The TF-IDF is the combination of
two statistics namely, term frequency and inverse document frequency.
Term frequency is how many times a term (residue or molecular text
item represented by 𝑡) appears in the document or molecule 𝑚 (Luhn,
1957). A log normalised or logarithmically scaled version of the term
frequency, log 𝑡𝑓 , is given by:

log 𝑡𝑓 (𝑡, 𝑚) =
log(1 + count of 𝑡 in 𝑚)
number of terms in 𝑚

.

Inverse document frequency is the amount of information the term
provides (Robertson, 2004). The inverse document frequency, 𝑖𝑑𝑓 , can
be obtained by logarithmically scaling the total number of molecules
divided by the number of molecules that contain the term.

𝑖𝑑𝑓 (𝑡,𝑀) = log
(

|𝑀|

𝑚 ∈ 𝑀 ∶ 𝑡 ∈ 𝑚

)

,

here 𝑀 is the corpus of molecules and |𝑀| is the total number of
molecules in the corpus. Using the definitions and equations for term
frequency and inverse document frequency one can obtain the formula

4 Turing, Word embeddings in NLP: A complete guide, 2022, https://www.
uring.com/kb/guide-on-word-embeddings-in-nlp.
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of term frequency-inverse document frequency (Elkan, 2005; Salton
and Buckley, 1988; Luhn, 1957):

TF -IDF (𝑡, 𝑚,𝑀) = log 𝑡𝑓 (𝑡, 𝑚) ⋅ 𝑖𝑑𝑓 (𝑡,𝑀).

TF-IDF proves valuable in eliminating common terms by assigning
higher value or weight to terms with a lower document frequency

cross the corpus and a higher term frequency within the document.
his TF-IDF value serves as a weight, quantifying the significance of a
erm within a document or molecule.

In the case of molecular text data atoms or amino acid residue rep-
esent the terms of the molecule. As such, each molecule file represents
document and the full dataset of molecules files represents the corpus.

.1.3. Latent Dirichlet allocation
As mentioned previously, in the context of LDA (Blei et al., 2003)

molecule is equivalent to a document and a residue or molecular
ext item is equivalent to a word or term. In the context of a corpus
f molecules 𝐶, LDA can be described as a generative statistical topic
odel where topics are represented by a distribution over molecu-

ar text items and random mixtures of these latent topics represent
olecules in the corpus. To uncover the topics within a corpus, it is
ost straightforward to approach the problem through reverse engi-
eering. As such, we employ a generative process for each molecule,
iming to identify the corpus’ topics. First, however, we must generate
he molecules within the corpus. To do this, we can use a generative
rocess for each molecule 𝐱𝑚 in the corpus 𝐶 with 𝑀 the number of
olecules in the corpus.

• Let {1,… , 𝑇 } be the vocabulary of molecular text items. A molec-
ular text item 𝑥1,… , 𝑥𝑇 is the basic unit of a molecule.

• A molecule 𝐱𝑚 is a combination of molecular text items denoted
by 𝐱𝐦 = [𝑥1,… , 𝑥𝑁𝑚

], where 𝑥𝑛 is the 𝑛th molecular text item in
the molecule and 𝑁𝑚 is the number of molecular text items in
molecule 𝐱𝐦 for 𝑚 ∈ {1,… ,𝑀}.

• A corpus 𝐶 is a collection of 𝑀 molecules denoted as 𝑀 =
[𝐱𝟏,… , 𝐱𝐌].

For each molecule 𝐱𝑚 in a corpus 𝐶 a generative process can be
ssumed (Blei et al., 2003; Pritchard et al., 2000) with latent variables
rom probability distributions with parameters equal to the known
ariables:

1. Draw a topic–molecule distribution 𝜽𝒎 from a Dirichlet distri-
bution. 𝜽𝒎 ∽ 𝐷𝑖𝑟 (𝜶), where 𝑚 ∈ {1,… ,𝑀} with 𝜶 a vector of
dimension equal to the number of topics 𝐾, where, ∑𝐾

𝑘=1 𝜃𝑚,𝑘 = 1
and 𝜃𝑚,𝑘 ∈ [0, 1] for all 𝑘 ∈ [1,… , 𝐾].

2. For each of the molecular text items 𝑥𝑚,𝑛, where 𝑚 ∈ {1,… ,𝑀},
and 𝑛 ∈ {1,… , 𝑁𝑀}:

(a) Generate a topic 𝑧𝑚,𝑛 ∽ multinomial
(

𝜽𝒎
)

.
(b) Generate a molecular text item 𝑥𝑚,𝑛 ∽ 𝑝

(

𝑥𝑚,𝑛|𝑧𝑚,𝑛, 𝜷
)

a multinomial probability conditioned on the topic 𝑧𝑚,𝑛,
where 𝜷 is the parameter of the Dirichlet prior on the
per-topic molecular text item distribution.

This equates to solving the following equation:

(𝜽, 𝐳|𝐱,𝜶, 𝜷) = 𝑝 (𝜽, 𝐳, 𝐱|𝜶, 𝜷)
𝑝 (𝐱|𝜶, 𝜷)

.

Approximate inference techniques such as variational inference
Blei et al., 2003) need to be applied to the problem since the nor-
alisation factor 𝑝 (𝐱|𝜶, 𝜷), cannot be exactly computed and so the
istribution is intractable. Using plate notation we provide an intuitive
xplanation of LDA (Anastasiu et al., 2013). Here the boxes are referred
o as ‘‘plates’’. The outer plate represents molecules, while the inner
late represents the repeated positions of the molecular text items
hich are associated with a choice of topic and molecular text item.

https://kavita-ganesan.com/what-are-n-grams/#.Yrs-LtJBzJw
https://www.turing.com/kb/guide-on-word-embeddings-in-nlp
https://www.turing.com/kb/guide-on-word-embeddings-in-nlp
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Fig. 1. Plate notation for the LDA model where, 𝑀 is the number of molecules in the
corpus 𝐶, 𝑁𝑚 is the number of molecular text items in a given molecule 𝑚, 𝜶 is a
corpus-level parameter of the Dirichlet prior on the per-molecule topic distribution, 𝜷
is a corpus-level parameter of the Dirichlet prior on the per-topic molecular text item
distributions, 𝜽𝒎 is the topic distribution for a given molecule, 𝑧𝑚𝑛 is the topic for the
𝑛-th molecular text item in molecule 𝑚 and 𝑥𝑚𝑛 is the specific molecular text item.

In the plate notation provided in Fig. 1, the only observed variable
is 𝑥, hence it is coloured grey. All of the other variables are latent
variables. Using the view provided in Fig. 1, the molecular text–topic
distributions is a matrix with topics as rows and columns defined
by molecular text items. The variable 𝜽 can be viewed as a matrix
of topic–molecule distributions, where the rows would be individual
molecules and the columns would be topics. Thus, each row of 𝜽 is
a distribution over topics and each row of the molecular text–topic
distributions is a distribution over molecular topics (Blei et al., 2003;
De Waal and Barnard, 2008) as can be seen in Fig. 1. The molecular
text–topic distribution matrix and topic–molecule distribution matrix
can be viewed as the decomposition of the original molecule-molecular
text item matrix that represents the corpus of documents being mod-
elled. Thus, LDA can also be thought of as a dimensionality reduction
technique (Blei et al., 2003; Crain et al., 2012) where the corpus is
represented as an embedding in a lower dimensional form using the
topic–molecule distribution matrix. The advantage of this approach is
that the interpretable topics should create a semantic embedding of the
molecules. Under the LDA model, a molecule can be associated with
more than one topic (Blei et al., 2003). Thus, the topic probability
vector for a molecule will be of dimension 𝐾. For a molecule 𝑥𝑚 the
topic probability vector can be represented as:

𝜽𝐦 = [𝑝
(

𝛼1
)

,… , 𝑝
(

𝛼𝐾
)

],

where 𝑝
(

𝛼𝑘
)

is the probability of the molecule being associated with
topic 𝑘. The LDA embedding will reduce the dimension of the molecular
text items in a molecule to a vector with dimension equal to the
number of topics chosen. This molecule–topic matrix will be a semantic
embedding for the corpus of molecules. Initial results saw a decrease
in performance for more than 100 topics. For this reason, we capped
the number of topics to 100.

3.2. Local embeddings

Local embeddings take the local features of a molecular text item
into account (Jurafsky and Martin, 2021), often making use of a win-
dow that summarises the local neighbourhood of a molecular text item.
As such, in contrast to global embeddings, local embeddings generate
a local descriptor at the molecular text item or word level.

Word2vec uses a group of related neural network models to com-
pute a continuous vector representation of words (Mikolov et al., 2013).
These models are shallow networks, consisting of only two layers. The
4

continuous vector of each word is chosen such that the cosine similarity
between vectors is an indicator of the true semantic similarity between
the words. In this way, a corpus of molecules can be transformed into
a vector space, where each word in the corpus is associated with a
distinct embedding vector within this feature space. Word2vec can
either make use of continuous bag-of-words (CBOW) or continuous
skip-gram model architectures (Mikolov et al., 2013). The CBOW model
takes into account the local window of words for the current word
to create its embedding. In this way word2vec takes local features
into account to create a local feature embedding vector for a word in
contrast to a global embedding at the level of a document. The skip-
gram model does the opposite of the CBOW model. It takes the current
word and uses it to predict the local window of words. Again, the
word2vec model can be applied and trained on a corpus of molecules
each of which are comprised of molecular text items.

There are a few considerations to be taken into account with regard
to local embedding. For instance, it is often helpful to subsample words
that have a frequency above a certain threshold. Subsampling frequent
words such as ‘‘a’’ and ‘‘the’’ allows a model to focus on words that
occur less frequently and have more information. Additionally, the
dimension of the embedding vector is directly related to the quality
of the embedding. Thus it is beneficial to increase the dimension of
the embedding vector until the performance metrics stop improving
or the cost of increasing the dimension is too high (Mikolov et al.,
2013). Lastly, the size of the context window can also be adjusted
to improve the quality of the embeddings (Mikolov et al., 2013).
The context window is the number of words around the target word
that are used by the model to make predictions for the target word
representation (Mikolov et al., 2013).

3.3. Classifiers

We make use of Support vector machines (SVM), Naïve Bayes
classifier (NBC) and a simple neural network (NN) classifier. Here, we
provide a brief overview of each classifier and describe the architecture
of the NN. Since the focus of this study involves the feature-engineered
embeddings, and not the models themselves, we assume default param-
eters (Pedregosa et al., 2011) for all models unless otherwise stated.

3.3.1. Support vector machine
SVMs are classification techniques (Boser et al., 1992) which map

training data points such that the distance between classes is max-
imised. The SVM classifier identifies an optimal hyperplane that ef-
fectively separates the training data points, thereby enabling accurate
classification. To make predictions, new data points are projected into
the same mapped space and assigned the class that they fall onto. SVMs
are also capable of handling non-linear classification tasks through the
utilisation of the kernel trick. Moreover, SVMs are memory efficient,
versatile and effective in high-dimensional spaces. We make use of
the scikit-learn5(Pedregosa et al., 2011) implementation of an SVM
classifier with a radial basis function. For all other parameters the
default scikit-learn parameters were used.

3.3.2. Naïve Bayes classifier
An NBC is a family of probabilistic classifiers based on Bayes’

theorem. They are examples of a simple Bayesian network where all
features or embeddings are assumed to be independent and are thought
to contribute equally to the outcome. We use the scikit-learn Multinomi-
alNB6 (Pedregosa et al., 2011) classifier for the CVec embeddings and
the GaussianNB for all other embeddings tested. We use a multinomial
NBC for the CVec embeddings since these embeddings reflect the
frequency with which terms occur. Given the continuous nature of the
remaining embeddings, we employ a Gaussian Naïve Bayes Classifier
under the assumption that the embeddings for each class follow a
normal distribution.

5 https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
6 https://scikit-learn.org/stable/modules/naive_bayes.html

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#
https://scikit-learn.org/stable/modules/naive_bayes.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://scikit-learn.org/stable/modules/naive_bayes.html
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Fig. 2. NN classifier architecture.
Fig. 3. A representation of two molecules using SMILES notation and their corre-
sponding two-dimensional structures. The continuous backbone of connected atoms is
coloured green, while branched groups are coloured differently for clarity.

3.3.3. Neural network architecture
We train a simple NN classifier for each embedding type on each

dataset using the PyTorch Python library (Paszke et al., 2019). If the
embedding has dimension 𝐷 then the classifier has an input layer of
dimension 𝐷, a hidden layer of dimension 𝐷∕2 and an output layer
with the final predictions. An illustration of the architecture is provided
in Fig. 2. We use batch normalisation and rectified linear unit (ReLU)
activation between the input layer and hidden layer and a sigmoid
activation for all predictions so as to ensure that the output values are
confined within the range of 0 to 1, a convention commonly adhered
to in binary classification tasks. Each model was trained for 50 epochs
with a batch size of 200. The epoch with the smallest loss was used for
the evaluation metrics. In the NN architecture provided in Fig. 2: BN1D
represents a batch normalisation layer, ReLU shows that rectified linear
unit activation is applied, Sigmoid shows that the element-wise sigmoid
function is applied and D represents the dimension or size of the input.
This will usually be the dimension of the embedding.

4. Data and data preprocessing

During data preprocessing, duplicates were systematically identi-
fied and removed from each dataset, ensuring data consistency and
integrity. Furthermore, any null or missing values within the datasets
were effectively addressed and rectified. Following these initial quality
control measures, each dataset underwent specific processing steps
tailored to the characteristics of the data type used.
5

4.1. SMILES data

The BBBP and BACE datasets are both comprised of SMILES data
and were obtained from Moleculenet (Wu et al., 2018). Small molecule
are often represented as a three-dimensional structures, as a two-
dimensional projection or using SMILES string notation. Fig. 3 illus-
trates the relationship between a two-dimensional representation of a
molecule and its corresponding SMILES string notation. Put simply, a
SMILES generation algorithm begins by breaking each cyclic ring at an
arbitrary point, making an acyclic structure. The addition of numerical
ring closure labels to show connectivity between non-adjacent atoms
in the SMILES notation. Following this, a continuous backbone of
connected atoms is selected as the basis of the molecule and branches
are defined where groups of atoms extend off of the main backbone.
Branches are described with parentheses where the first atom within
the parentheses, and the first atom after the parenthesised group are
both bonded to the same branch point atom.

When considering the SMILES datasets we make use of the rdkit7

(Landrum et al., 2016) and mol2vec8 (Jaeger et al., 2018) Python
packages. Using these two packages we can divide each molecule into
distinct substructures by applying a specified fixed radius. Typically,
a substructure comprises the group of atoms closest to a given heavy
atom within the specified radius. Subsequently, each substructure is
then encoded using a Morgan fingerprint which is a bit vector represen-
tation of a molecule (Ding et al., 2021; Glem et al., 2006). The presence
or absence of a substructure is represented by each bit. In this manner,
the substructures effectively become the words of a molecular sentence,
with each word distinguished by its unique Morgan fingerprint. Morgan
fingerprints can be used to measure the chemical similarity between
molecules (Glem et al., 2006) and have properties that benefit our
approach. Consequently, each molecular sentence corresponds to a
molecule, and these sentences are now amenable to being inputted into
the embedding techniques utilised in this study in order to get a vector
representation of each molecule.

4.2. FASTA data

The FASTA SPS dataset is a dataset of extracted FASTA sequences.
The FASTA format is a text-based format in which represents the
primary structure of a protein which is the linear sequence of its amino
acids. By convention, the amino acid sequence of a protein is read
and written from the amino terminal to the carboxyl terminal with

7 https://www.rdkit.org/
8 https://github.com/samoturk/mol2vec

https://www.rdkit.org/
https://github.com/samoturk/mol2vec
https://www.rdkit.org/
https://github.com/samoturk/mol2vec


Computational Biology and Chemistry 110 (2024) 108056C. Jardim et al.
Table 1
Finding the best embedding for the SVM.

Data type Dataset Technique Accuracy ± (SD)% AUC ± (SD)% F1 ± (SD)%

CVec 81.85 ± 1.12 × 10−14 81.62 ± 0.00 80.14 ± 2.24 × 10−14

BACE TF-IDF 85.48 ± 𝟏.𝟏 × 10−14 85.41 ± 𝟏.𝟏𝟐 × 10−14 84.62 ± 𝟏.𝟏𝟐 × 10−14

LDA 72.00 ± 2.86 71.67 ± 2.91 68.71 ± 3.72
Smiles word2vec 66.67 ± 1.12 × 10−14 66.01 ± 1.12 × 10−14 60.08 ± 1.12 × 10−14

CVec 87.75 ± 2.24 × 10−14 76.21 ± 1.12 × 10−14 92.49 ± 1.12 × 10−14

BBBP TF-IDF 91.18 ± 𝟏.𝟏𝟐 × 10−14 82.39 ± 𝟎.𝟎𝟎 94.55 ± 𝟎.𝟎𝟎
LDA 85.55 ± 1.18 73.11 ± 2.20 91.14 ± 0.72
word2vec 80.64 ± 0.00 56.91 ± 0.00 88.89 ± 0.00

CVec 74.01 ± 𝟏.𝟏𝟐 × 10−16 73.05 ± 𝟎.𝟎𝟎 68.66 ± 0.00
FASTA SPS TF-IDF 73.18 ± 0.00 72.68 ± 1.12 × 10−16 68.91 ± 2.24 × 10−16

LDA 72.70 ± 0.50 72.47 ± 0.52 69.07 ± 𝟎.𝟔𝟏
word2vec 70.92 ± 0.15 69.86 ± 0.17 64.81 ± 0.24
amino acids represented using their single letter codes for example
‘‘G’’ for Glycine. A description line, or header, precedes the sequence
information and begins with ‘‘>’’. The header gives a name or a unique
identifier for the sequence, and may also contain additional information
about the sequence such as the source organism. Fig. 4 illustrates the
relationship between the three-dimensional structure of a protein and
its corresponding FASTA sequence.

For the FASTA SPS dataset we first join the labels to the protein
sequences using the raw datasets obtained from Kaggle.9 Following this,
we proceed to filter the molecules to select only those that refer to pro-
tein sequences. Subsequently, we further refine the dataset by filtering
it to contain sequences categorised within the top two classes with the
highest sample counts. We perform this step to transform the problem
into a binary classification task in order to simplify the architecture
of our models. To facilitate subsequent processing, we insert a space
between each amino acid residue in the sequence. Additionally, we
omit the letter ‘‘X’’ from the sequences since it can potentially represent
any amino acid residue, therefore, rendering it non-informative for the
classification task.

5. Results

We run 5 experiments to compare the combination of embeddings
(as features) with NN, NBC and SVM models. Unless stated otherwise,
we make use of an 80%:20% train–test split of the data for all of the
models. Additionally, we set the random state to 0 for the training and
test splits for all of the experiments. Due to the large combination of
models and datasets, we opted not to perform hyper-parameter tuning.
Our focus was on employing straightforward model architectures with
default parameters in an effort to maintain simplicity and consistency
across our experiments. LDA embeddings of dimension 10, 20, 50
and 100 were considered for each dataset and model combination
while embedding dimensions of 100, 200 and 300 are considered for
word2vec embeddings. The dimension that provided the best results for
the dataset and model combination were used unless stated otherwise.
Higher dimensions (greater than 300) were not considered due to initial
experiments showing a decrease in performance for larger dimensions
and compute limitations for both LDA and word2vec embeddings. Fu-
ture work could focus on hyper-parameter tuning and larger embedding
dimensions. All experiments and coding have been done in Python
(Python 3.10). The experiments were run on a Lenovo machine using
Ubuntu 20.04 with an Intel i7-8565U processor, 2 GB NVIDIA GeForce
MX230 and 12 GB of RAM.10 Each experiment was run 50 times. The
mean and standard deviation of the accuracy,11 the area under the

9 https://www.kaggle.com/datasets/shahir/protein-data-set?resource=
download&select=pdb_data_seq.csv

10 It took less than 10 min to train and run predictions for the longest single
run on the largest dataset on the machine described in Section 5.

11 Accuracy can be calculated as the number of correct predictions divided
by the total number of predictions (Sammut and Webb, 2017).
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Fig. 4. A representation of a molecule using FASTA notation and its corresponding
three-dimensional structure.

receiver operating characteristic curve (AUC) and F1 score (Sammut
and Webb, 2017) are calculated for each experiment across the 50
runs.12 We find the best embedding technique for each dataset for the
SVM, NBC and NN. We then compare the best embedding and model
combination for each dataset. Lastly, we compare our best embedding
and model combination to the Moleculenet benchmark metrics.

5.1. Finding the best embedding for the SVM

We compare the different embeddings in terms of accuracy, AUC
and F1 score for the SVM. We use the optimal embedding dimension
for the word2vec and LDA embeddings that achieved the best results in
previous experiments. We use LDA embeddings of dimension 50 for the
FASTA SPS dataset and dimension 100 for the BACE and BBBP dataset.
We use word2vec dimensions of 100 for the FASTA SPS dataset and
for the BACE and BBBP datasets we use a pre-trained model (Jaeger
et al., 2018) that outputs word2vec embeddings of dimension 300. The
word2vec and LDA embeddings are not the best embedding technique
for any dataset for the SVM according to Table 1. It appears that
the best embeddings for the SVM are TF-IDF for the BACE and BBBP
datasets (85.48% and 91.18% average accuracy) and CVec for the
FASTA SPS dataset (74.01% average accuracy). It is interesting to note
that TF-IDF seems to perform better for SMILES datasets whilst CVec
performs better for the FASTA datasets for the SVM.

5.2. Finding the best embedding for the NBC

We compare the different embeddings in terms of accuracy, AUC
and F1 score for the NBC. We use the optimal embedding dimension

12 The code is available at https://github.com/Claudmj/Feature-engineered-
embeddings-for-classification-of-molecular-data.

https://www.kaggle.com/datasets/shahir/protein-data-set?resource=download&select=pdb_data_seq.csv
https://www.kaggle.com/datasets/shahir/protein-data-set?resource=download&select=pdb_data_seq.csv
https://www.kaggle.com/datasets/shahir/protein-data-set?resource=download&select=pdb_data_seq.csv
https://github.com/Claudmj/Feature-engineered-embeddings-for-classification-of-molecular-data
https://github.com/Claudmj/Feature-engineered-embeddings-for-classification-of-molecular-data
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Table 2
Finding the best embedding for the NBC.

Data type Dataset Technique Accuracy ± (SD)% AUC ± (SD)% F1 ± (SD)%

CVec 68.65 ± 𝟏.𝟏𝟐 × 10−16 69.80 ± 𝟎.𝟎𝟎 73.83 ± 𝟎.𝟎𝟎
BACE TF-IDF 67.66 ± 0.00 68.85 ± 1.12 × 10−16 73.22 ± 1.12 × 10−16

LDA 60.77 ± 4.50 62.10 ± 3.96 68.23 ± 2.89
Smiles word2vec 68.65 ± 1.12 × 10−16 68.39 ± 1.12 × 10−16 65.70 ± 1.12 × 10−16

CVec 65.69 ± 0.00 72.41 ± 𝟎.𝟎𝟎 73.28 ± 0.00
BBBP TF-IDF 65.44 ± 0.00 71.06 ± 1.12 × 10−16 73.35 ± 1.12 × 10−16

LDA 59.22 ± 18.07 64.33 ± 6.47 62.80 ± 25.29
word2vec 75.25 ± 𝟏.𝟏𝟐 × 10−16 61.42 ± 0.00 84.44 ± 𝟏.𝟏𝟐 × 10−16

CVec 43.71 ± 5.61 × 10−17 50.50 ± 0.00 60.29 ± 1.12 × 10−16

FASTA SPS TF-IDF 45.57 ± 0.00 51.94 ± 1.12 × 10−16 60.70 ± 0.00
LDA 64.05 ± 0.99 66.00 ± 1.01 65.67 ± 1.28
word2vec 65.30 ± 1.31 65.02 ± 1.47 60.93 ± 2.20
Table 3
Finding the best embedding for the NN.

Data type Dataset Technique Accuracy ± (SD)% AUC ± (SD)% F1 ± (SD)%

CVec 88.00 ± 1.22 93.57 ± 0.48 87.29 ± 1.49
TF-IDF 83.58 ± 1.33 91.04 ± 0.76 82.62 ± 1.32

Smiles BACE LDA 74.30 ± 2.24 81.83 ± 2.26 71.92 ± 2.61
word2vec 69.34 ± 1.16 76.01 ± 0.84 67.10 ± 2.48
CVec 81.00 ± 16.08 83.22 ± 16.10 83.48 ± 16.09
TF-IDF 84.93 ± 13.25 86.77 ± 13.39 87.88 ± 13.30

BBBP LDA 78.56 ± 16.15 79.91 ± 15.98 82.31 ± 16.08
word2vec 58.26 ± 12.35 54.46 ± 12.28 64.09 ± 12.31

CVec 73.55 ± 0.54 81.05 ± 0.34 68.68 ± 0.91
TF-IDF 72.43 ± 0.51 79.71 ± 0.37 67.48 ± 0.95

FASTA SPS LDA 71.36 ± 0.72 78.83 ± 0.66 66.66 ± 1.14
word2vec 71.40 ± 0.57 79.25 ± 0.42 66.48 ± 1.33
for the word2vec and LDA embeddings and compare it with count
vectorisation (CVec) and TF-IDF. We use LDA embeddings of dimension
100 for the BACE dataset, dimension 10 for the FASTA SPS dataset
and BBBP dataset. We use word2vec dimensions of 100 for the FASTA
SPS dataset and for the BACE and BBBP datasets we use a pre-trained
model (Jaeger et al., 2018) that outputs word2vec embeddings of
dimension 300. CVec is the best embedding technique for the NBC
for the BACE dataset as seen in Table 2 with an average accuracy
of 68.65%. Word2vec embeddings achieve 75.25% average accuracy
on the BBBP dataset and 65.30% average accuracy on the FASTA SPS
dataset.

5.3. Finding the best embedding for the NN

We compare the different embeddings in terms of accuracy, AUC
and F1 score for the NN. We use the optimal embedding dimension
for the word2vec and LDA embeddings. We use LDA embeddings of
dimension 100 for the BACE dataset, BBBP dataset and FASTA SPS
dataset. We use word2vec dimensions of 200 for the FASTA SPS dataset
and for the BACE and BBBP datasets we use a pre-trained model (Jaeger
et al., 2018) that outputs word2vec embeddings of dimension 300.

CVec is the best embedding technique for the NN on the BACE
and FASTA SPS datasets as seen in Table 3. CVec embeddings achieve
88.00% average accuracy on the BACE dataset and 73.55% aver-
age accuracy on the FASTA SPS dataset. TF-IDF is the best embed-
ding technique for the NN on the BBBP dataset with 84.93% average
accuracy.

5.4. Finding the best embedding and model combination for each dataset

We find and compare the best embedding and model combination
for each dataset in terms of accuracy, AUC and F1 score. The model
and embedding combinations used are shown in Table 4. CVec and the
NN model were the best combination for the BACE dataset (average
accuracy 88.25% Table 5), TF-IDF and a SVM was the best for the BBBP
dataset (average accuracy 91.18% Table 5) and CVec and a SVM was
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the best for the FASTA SPS dataset (average accuracy 74.01% Table 5).
Table 4
The model and embedding combination used to find the best model and embedding
combination for each dataset.

Model Dataset

BACE BBBP SPS

SVM TF-IDF TF-IDF CVec
NBC CVec Word2vec LDA
NN CVec TF-IDF CVec

5.5. Comparison with Moleculenet

Lastly, we compare our approach to the Moleculenet (Wu et al.,
2018) using a ‘‘scaffold’’ split13 from the deepchem package to compare
to the Moleculenet results in Table 6. A scaffold split is more ‘‘difficult’’
than a random split as it splits the molecules according to the core
structure or scaffold of a molecule resulting in structurally different
training and test sets (Ramsundar et al., 2019). We compare the best
embedding and model combination for the BACE and BBBP datasets, in
terms of AUC, to the best model presented by Moleculenet (Wu et al.,
2018). Our best model and embedding combination for both of these
datasets is CVec with a NN model.

Our method scores a higher AUC (83.67% compared to 72.90%
Table 6) for the BBBP dataset and a slightly lower AUC (85.13%
compared to 86.70% Table 6) for the BACE dataset Table 6. We only
use the SMILES strings, yet our method scores higher or only slightly
lower than alternative approaches that use more features.

5.6. Discussion

It should be noted that there is little to no variation between
the 50 runs for CVec and TF-IDF embeddings in Tables 2 and 1.

13 A scaffold split attempts to separate molecules according to their structure
such that structurally different molecules will be in different subsets (Bemis
and Murcko, 1996).

https://deepchem.readthedocs.io/en/latest/api_reference/moleculenet.html
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Table 5
Finding the best embedding and model combination for each dataset.

Dataset Model Embedding Accuracy ± (SD)% AUC ± (SD)% F1 ± (SD)%

SVM TF-IDF 85.48 ± 1.12 × 10−14 85.41 ± 1.12 × 10−14 84.62 ± 1.12 × 10−14

BACE NBC CVec 68.65 ± 1.12 × 10−16 69.80 ± 0.00 73.83 ± 0.00
NN CVec 88.00 ± 1.22 93.57 ± 0.48 87.29 ± 1.49

SVM TF-IDF 91.18 ± 𝟏.𝟏𝟐 × 10−14 82.39 ± 0.00 94.55 ± 0.00
BBBP NBC word2vec 75.25 ± 1.12 × 10−16 61.42 ± 0.00 84.44 ± 1.12 × 10−16

NN TF-IDF 84.93 ± 13.25 86.77 ± 13.39 87.88 ± 13.30

SVM CVec 74.01 ± 𝟏.𝟏𝟐 × 10−16 73.05 ± 0.00 68.66 ± 0.00
SPS NBC LDA 64.05 ± 0.99 66.00 ± 1.01 65.67 ± 1.28

NN CVec 73.55 ± 0.54 81.05 ± 0.34 68.68 ± 0.91
Table 6
Comparison with Moleculenet.

Dataset Method Auc%

BBBP Moleculenet 72.90
Ours (TF-IDF and NN) 83.67

BACE Moleculenet 86.70
Ours (CVec and NN) 85.13

This is because these embeddings will be the same between runs due
to the deterministic nature of CVec and TF-IDF. The classification
models exhibit minimal variability due to the consistent use of the
same random state for data splitting across multiple experimental runs.
However, more significant variability was observed in runs involving
LDA and word2vec embeddings. This divergence is due to the necessity
of training new LDA or word2vec models for each run. Consequently,
the embeddings generated in these runs display slight discrepancies,
leading to variation in the embeddings across different runs. This
coupled with the variation in the trained classifiers results in greater
variation than for the CVec and TF-IDF embedding runs Tables 2 and 1.
In particular, there is greater variation for the LDA embeddings and the
NBC and NN model for the BBBP dataset as can be seen in Tables 2 and
3. We hypothesise that this is due to the large vocabulary size of 2115
which is almost equal to the number of data points for the BBBP dataset
as well as the general sensitivity of NNs to the initialisation of weights.
It seems that this dataset is particularly difficult to separate between the
two classes when using LDA embeddings. Future work could focus on
further investigation of the causes for the observed variability between
runs. CVec and TF-IDF appear to be the best embedding techniques (see
Table 5). Notably, CVec embeddings consistently outperformed TF-IDF,
LDA and word2vec when considering the FASTA SPS dataset for the
NN and SVM. We hypothesise that this is because FASTA sequences
consist of a finite set of amino acids, which means there is no ambi-
guity in the vocabulary and CVec works well in such scenarios where
the vocabulary is well-defined and limited. Additionally, in biological
sequences, the frequency of specific amino acids or motifs can be
biologically meaningful and CVec is able to capture this information
effectively by considering word frequency. Among the models assessed
across all datasets, CVec consistently emerged as the top-performing
embedding method. In contrast, TF-IDF embeddings, which involve
normalisation, exhibited slightly lower performance metrics compared
to CVec due to the loss of crucial information. Interestingly, the global
embedding techniques outperformed the local embeddings, such as
word2vec. Overall, our approach yielded superior metrics, particularly
excelling with the BBBP dataset. However, it achieved a slightly lower
AUC for the BACE dataset.

6. Conclusion

In this research, we derived latent embeddings for molecular text
data and evaluated the use of these embeddings as features for molec-
ular property prediction and protein family classification. CVec, TF-IDF,
LDA and word2vec embeddings provide a useful transformation of
8

molecular text data to a vector space. These embeddings reduce the
dimensionality of the data whilst keeping relative similarity between
observations in their transformed state. In this way, a small amount of
data can be used to understand a dataset.

For use as feature vectors for ML models, CVec and TF-IDF were the
best performing embedding techniques of those evaluated in this study.
It is likely that the normalisation utilised in the TF-IDF embeddings
results in the lost of some information and, thus, TF-IDF exhibited
slightly poorer performance in comparison to CVec. The LDA em-
beddings achieved lower metrics than those obtained through TF-IDF
which could be attributed to the topic–molecule distribution of the LDA
embeddings which may not have captured enough relative information
to be useful as a feature vector for the ML models. Furthermore, it can
be argued that the increased variation in training the LDA embeddings
may have further contributed to the average lower performance of
the LDA embedding technique. However, we believe that the LDA
embeddings could add robustness and versatility due to their ability
to represent corpus information effectively. Interestingly, the embed-
ding of local features using word2vec did not improve classification
performance and it was observed that the local embedding techniques
performed worse than all of the global embedding techniques except for
the NBC on the BBBP dataset. This finding suggests that it may be more
useful for future studies to utilise and further investigate the use of
global embeddings. Overall, in comparison to the MoleculeNet bench-
mark (Wu et al., 2018), our approach achieved better performance for
the BBBP dataset and a slightly lower AUC for the BACE dataset. These
results are particularly encouraging since our methodology achieves
similar or better results whilst being computationally efficient. Future
work should investigate fine-tuning the classifiers to further improve
performance since, in this study, the default arguments were utilised
for all classifiers tested.

Additionally, the use of learnt embeddings in machine learning
tasks holds significant potential for improving classifier and regressor
architectures and enhancing prediction outcomes. When considering
proteins, evolutionary information such as protein superfamilies, fam-
ilies and homologues is likely to be captured in a global embedding.
Our study has shown that these embedding techniques are useful in
specific tasks and have promising applications. However, it is worth
noting that we did not compare to the latest result on the Molecu-
lenet benchmark. Instead, we prioritise the evaluation of reliable and
reproducible embedding techniques for machine learning classification
tasks. We illustrated the robustness of our method using SMILES and
FASTA data. To ensure fair comparisons, we employ consistent models
across embedding techniques. We did not deem it fair to compare
to techniques that were pre-trained on larger datasets. As such, we
compare our results with simpler benchmarks on Moleculenet to high-
light the effectiveness of straightforward embeddings when paired with
interpretable models. This emphasises the importance of accessibility
and transparency in machine learning approaches, demonstrating that
even simpler techniques can yield competitive and explainable results
when deployed thoughtfully.
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