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DISSERTATION SUMMARY 

Genetic architecture of gene expression during xylogenesis in 

Eucalyptus interspecific hybrids 

Lizette Loubser 

Supervised by Prof Alexander A. Myburg 

Co-supervised by Prof Eshchar Mizrachi and Dr Nanette Christie 

Submitted in partial fulfilment of the requirements for the degree Magister Scientiae 

Department of Biochemistry, Genetics and Microbiology 

University of Pretoria 

Xylogenesis is a complex biological process involving thousands of genes that leads to the formation 

of woody biomass, which is one of the largest sources of renewable raw materials for many industrial 

applications, such as construction, bioenergy, and biomaterials. This process is a strong carbon sink 

that needs to be kept under strict regulation at the transcriptional level. Better understanding of the 

key regulators underlying environmentally or industrially desirable phenotypes will allow us to 

improve woody biomass traits for bioprocessing and biorefinery. Variation in these phenotypes is 

associated with many genes segregating at population level, particularly in highly outbred populations 

such as Eucalyptus interspecific hybrids. Eucalyptus trees, which have a large capacity to produce 

woody tissue with superior structural and chemical qualities and relatively short rotation, are 

important models for wood formation research. 

In this study, we aimed to characterise the genetic architecture of gene expression during xylogenesis 

in an interspecific (E. grandis x E. urophylla) Eucalyptus F2 backcross population and to determine 
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the conservation of the genetic architecture across age. This was done by analysing RNA-seq data 

from xylem tissues of 156 and 100 field-grown Eucalyptus trees at juvenile (three years) and rotation 

(eight years) age respectively. Transcriptome-derived SNPs were used to construct a gene-based 

genetic linkage map for eQTL detection using 236 high confidence markers in highly expressed 

genes. We identified co-expression modules for 25,267 genes, which were used to construct a co-

expression network. This network allowed identification of the main biological functions of each 

module, and dissemination of transcriptional coordination of metabolic functions and development 

during xylogenesis. Global eQTL analyses of co-regulated genes led us to the identification of 22 

trans-eQTL hotspots, which are major regulatory perturbations that can change the structure of the 

co-expression network. To characterise the genetic architecture of gene expression variation during 

xylem development, the co-expression and co-regulation results were integrated into systems genetics 

models, which revealed a major shift in the transcriptional regulation architecture from juvenile to 

mature age, evidenced by new trans-eQTL hotspots detected in mature trees. 

 

This study provides a new method for rapid genetic dissection of gene expression variation from 

population-wide transcriptome data alone and provides insight into the regulation of xylem genes 

across age. The observed changes in the genetic architecture of wood formation genes, as well as 

those observed in genes related to abiotic stress response, suggests that there are multiple contributing 

factors associated with variation in transcript abundance, including developmental or age-related 

changes, stress-related changes and other yet unknown biological effects. By combining results from 

eQTL and co-expression analyses into systems genetics models, we identified a genetic basis for 

coordinated gene expression responses regulating biological processes in xylem. These results will 

enable us to analyse the genetic architecture underlying complex wood biorefinery traits and identify 

interacting genes and pathways. This can then be used to engineer or breed for complex wood 

property traits while avoiding negative effects on plant growth. 
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PREFACE 
 

Woody biomass, also known as secondary xylem, is formed during a process called xylogenesis, 

where thousands of genes are involved in the formation of xylem cells that largely consist of thick 

secondary cell walls. Wood is not only one of the main sources of renewable raw materials to produce 

timber, pulp, paper, and biorefinery derivatives, it is also a major carbon sink inside plant cells that 

is important for climate regulation and requires strict transcriptional control at the tissue and organ 

level. The rate at which carbon is deposited into secondary cell walls requires strict coordination of 

xylem cell metabolism, cell wall formation, and coordination of carbon (sugar) transport via the 

phloem to xylem cells. Eucalyptus tree species and hybrids are some of the most widely planted 

hardwood crops in South Africa (and globally), due to their superior wood quality, wide adaptability, 

fast growth and quick rotation times that can be as short as five to seven years. Environmentally and 

industrially important wood property traits have complex genetic architectures, particularly in highly 

outbred populations such as Eucalyptus interspecific hybrids, where large numbers of genes are 

segregating in the population and contributing to trait variation. 

 

Many studies have used systems biology approaches to better understand pathways related to 

development and stress responses and identify associated key regulators associated with them. 

However, such studies are often based on extreme phenotypes that are expressed as a result of 

multiple reactions to a major perturbation (such as gene knock-out) with an adverse effect. To fully 

understand complex quantitative traits, systems genetics approaches need to be used to link naturally 

occurring genetic polymorphisms to trait variation, which will assist in the discovery of novel 

strategies to manipulate phenotypic variation and provide a better understanding of the mechanisms 

underlying complex quantitative trait variation. Systems genetics approaches also enable population-

wide modelling of interactions among thousands of genes involved in important biological pathways 

and their response to environmental factors. Mapping expression quantitative trait loci (eQTLs) 
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detects significant associations between genomic loci and the variation in molecular intermediate 

phenotypes, such as transcript abundance. This allows the identification of genes that are associated 

with quantitative traits. However, these traits are influenced by many genes and therefore integrative 

systems genetics models can be used to account for this. Network-based systems genetics approaches 

can be used to prioritise candidate genes associated with complex traits in highly outbred populations 

and to identify possible key regulators underlying variation in these traits. 

 

This dissertation describes the results of a genome-wide study of the genetic architecture of gene 

expression during xylogenesis in a E. grandis x E. urophylla interspecific backcross population, with 

the future objective of prioritising candidate genes underlying complex biorefinery traits for genetic 

engineering. Chapter 1 is a literature review which aims to provide a comprehensive background on 

systems biology, systems genetics, genetical genomics, and the state-of-the-art in systems biology 

dissection of complex traits and high-throughput RNA-seq analysis in plant populations. Chapter 2 

describes the development of integrative systems genetics models that allowed the characterisation 

of the genetic architecture of xylem expressed genes over time (three to eight years of growth). This 

approach allowed us to achieve the following objectives: 

• Population-wide mapping and quantification of xylem transcriptome profiles 

• Determination of the heritability of xylem transcriptome profiles in clonal replicates 

• Construction of a robust genetic linkage map for the E. grandis x E. urophylla F1 hybrid parent 

• Systems genetics modelling and genetic architecture characterisation of xylem development at 

rotation age 

• Comparison of transcript abundance and genetic architecture in juvenile (three-years-old) and 

mature (eight-years-old) trees 

The results provide insight into the regulation of xylem genes and how this regulation changes across 

age and in response to abiotic stresses.  

 

 
 
 



xi 
 

Chapter 2 has been prepared in the format of a draft research manuscript for submission to a peer-

reviewed journal (e.g. New Phytologist). The work done for this dissertation was part of a larger 

project within the Forest Molecular Genetics (FMG) programme, in the Department of Biochemistry, 

Genetics and Microbiology (BGM) and the Forestry and Agricultural Biotechnology Institute (FABI), 

at the University of Pretoria from January 2018 until November 2019. The following conference 

outputs were gained from the M.Sc.: 

 

Loubser L, van der Merwe K, Ployet R, Christie N, Mizrachi E, Myburg AA. Age-to-age correlation 

and heritability of transcriptome variation in Eucalyptus. South African Society for Bioinformatics 

(SASBi) / South African Genetics Society (SAGS) Conference, October 2018. Golden Gate 

Conference Centre, Clarens, South Africa (Poster). 

 

Loubser L, Ployet R, Christie N, Mizrachi E, Myburg AA. Rapid genetic dissection of xylem gene 

expression variation in a Eucalyptus interspecific backcross population. International Union of Forest 

Research Organizations (IUFRO) Tree Biotechnology 2019 Meeting, June 2019. Raleigh, NC, USA 

(Poster). 
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CHAPTER 1 

LITERATURE REVIEW 

Systems Genetics and the Genetic Architecture of Complex 

Quantitative Traits
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1.1 Introduction 

One of the longest-standing questions that geneticists have struggled with is understanding how 

phenotypic variation is affected by variation in the genotype (Boyle et al., 2018). Quantitative genetic 

traits are observed as different phenotypes across individuals in a population and can be controlled 

by environmental influences or inherited through the genotype. However, these traits are typically 

determined by a combination of both factors, known as genotype-environment (GxE) interactions 

(Falconer & Mackay, 1996). These quantitative characteristics can either be monogenic or complex. 

A monogenic trait is controlled by variation in a single gene, whereas complex traits are controlled 

by the variation in multiple genes and their interaction with environmental elements. Complex traits 

are known to have non-Mendelian patterns of inheritance that are not readily predictable and usually 

display many different phenotypes (Colbert et al., 2011). It is important for us to study the genetic 

architecture of complex traits as it enables the use of marker-assisted selection for breeding, but the 

mapping of polymorphisms that regulate the variation in these traits presents a key challenge in 

biology (Mackay, 2001; Thavamanikumar et al., 2013). 

 

Most quantitative traits display some degree of heritability and tend to have lower heritabilities than 

qualitative traits, as they can be greatly influenced by the environment. Heritability is a statistical 

estimation of the amount of phenotypic variation observed between individuals within a population 

due to variation in their genotypes. It can be divided into two categories, namely narrow-sense 

heritability (h2) and broad-sense heritability (H2), depending on the type of genetic variation in 

question (Falconer & Mackay, 1996). Narrow-sense heritability is a parameter generally used for 

predicting responses to selection and correlation between relatives, as it is concerned with genotypic 

variation that is caused by purely additive genetic factors (Visscher et al., 2008). Broad-sense 

heritability, also known as the repeatability, refers to the amount of phenotypic variation explained 

by the total genetic variance, which includes additive genetic factors and genetic variance. This 

genetic variance can be due to dominance, where one allele masks the phenotypic effect of the other, 
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and epistasis, where one gene masks the effect of another (Kruijer et al., 2014). Knowing the 

heritability of a trait is valuable, as traits with greater heritabilities can be modified more easily by 

selection and breeding (Xu et al., 2017). 

 

The genetic architecture of complex quantitative traits refers to the underlying genetic basis and 

variation observed within these traits (Hansen, 2006). This can become quite complicated, as the 

observed variation in a phenotype is essentially due to alleles segregating at several loci (Mackay, 

2001). The variation in gene expression affecting these traits may be regulated by several factors, 

such as quantitative trait loci (QTLs), varying strengths of the effects of different loci, random 

distribution of genes, pleiotropic effects, and gene interactions. Genes can either interact with 

environmental elements or with other genes, resulting in additive, dominant, or epistatic effects (Wu 

et al., 2007). Variance in gene expression due to epistatic effects results from the interactions between 

genes at different loci that all have an effect on a complex quantitative trait, but this variance is 

generally only significant at high levels of heterozygosity (Mäki-Tanila & Hill, 2014). Genetical 

genomics can help us to better understand variation in gene expression levels and how it affects 

complex traits.  

 

Genetical genomics is a concept that was first proposed by Jansen and Nap in 2001, where 

transcriptome mapping is performed to analyse gene expression across an entire genome. The 

identification and mapping of gene expression QTLs (eQTLs), which control the level of variation in 

a transcriptome, allows us to connect the variation in genotypes to phenotypic variation in a 

segregating population. The regulatory relationships between an eQTL and its respective structural 

genes can be divided into two categories: (i) cis-eQTLs that map within the same chromosome as the 

gene itself and (ii) trans-eQTLs that map elsewhere in the genome (Jansen & Nap, 2001). One of the 

most important elements of genetical genomics is eQTL hotspots, where many genes that map to one 

locus are influenced by a single polymorphism that leads to large biological effects. Identifying these 
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hotspots allows for the construction of gene regulatory networks through systems biology approaches 

(Breitling et al., 2008). 

 

Systems biology is a holistic approach to understand the complex interactions within biological 

systems. This can be done by disturbing a system, studying its responses, and integrating the data to 

form models which can describe the system and its responses to variation caused by mutations. These 

models are also able to predict how a system will change over time and under varying conditions. 

Systems biology is an interdisciplinary field with a focus on complex, scale-free biological networks 

of molecular and physical interactions (Civelek & Lusis, 2014). An important component of systems 

biology is systems genetics, which aims to understand complex interactions and the flow of biological 

information underlying complex traits by quantifying intermediate phenotypes. These intermediate 

phenotypes can be transcript levels, interactions across multiple biological scales, or even large 

biological networks (Civelek & Lusis, 2014). Systems genetics ultimately links genes and gene 

networks to specific traits and integrates systems biology methods with genetics methods to connect 

genotypes and phenotypes in complex traits at a population level (Nadeau & Dudley, 2011). 

 

The process of wood formation is a complex biological system that is important for us to model and 

understand. Apart from obvious applications in pulp and paper production, wood is also an 

economically important renewable energy source and provides energy-efficient building materials as 

environmentally cost-effective alternatives (Plomion et al., 2001). Hardwood species, such as 

Eucalyptus trees, are important models for wood formation research as they have a large capacity to 

produce woody tissue. The formation of wood, or secondary xylem largely composed of fibres and 

vessels with thick secondary cell walls, is a continuous dynamic process that is regulated by internal 

and external factors and involves thousands of genes (Zhang et al., 2014; Mizrachi and Myburg, 

2016). There are five key steps in wood formation: (i) division of cells; (ii) expansion of cells; (iii) 

thickening of secondary cell walls; (iv) cell wall lignification; and (v) programmed cell death which 
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leads to the formation of an empty tube with secondary cell walls (Plomion et al., 2001; Demura & 

Fukuda, 2007). 

 

This review aims to provide a comprehensive background on systems biology, genetical genomics 

and systems genetics. It also aims to discuss the state-of-the-art in systems biology dissection of 

complex traits and high-throughput RNA-seq analysis in plant populations. We want to gain an 

understanding of the genetic variations underlying complex phenotypic variations for wood growth 

and development and determine how genetic variation is expressed via its effect on systems 

components. This will ultimately allow us to determine the phenotypic variation in segregating plant 

populations. For more in-depth reviews, please refer to Mackay (2001), Hansen, Halkier and 

Kliebenstein (2008), Visscher and Goddard (2010), Civelek and Lusis (2014), Feltus (2014), and 

Goddard et al. (2016). 

 

1.2 Genetic Dissection of Quantitative Traits in Plants 

1.2.1 Genetical genomics 

Genetical genomics is a strategy first described by Jansen and Nap (2001) to analyse the expression 

profile data of an entire genome in combination with the genetic variation observed between 

individuals in a segregating population (Figure 1.1). It specifically aims to identify QTLs for gene 

expression data, referred to as expression QTLs (eQTLs), and map these at a global level (Breitling 

et al., 2008; Zhu et al., 2009). QTL analyses describe the natural variation in a population by 

searching for regions in the genome where genetic variation and phenotypic variation are correlated, 

and mapping QTLs ultimately allows the identification of genes responsible for the variation in a 

trait. eQTLs, which result from segregating polymorphisms that affect the level of transcript variation, 

such as single nucleotide polymorphisms (SNPs), can be used to detect correlations (genomic 
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overlaps) between the polymorphisms and QTLs. Such overlaps can be used to identify candidate 

genes that are responsible for the observed phenotypic variation in a trait (Hansen et al., 2008). 

 

 

Figure 1.1: Genetical genomics. Combining the expression profiles of individuals in a segregating population with the 
analysis of their molecular markers allows us to identify candidate genes associated with complex trait phenotypes using 
QTL analyses. (A) Two parents from different ecospecies are crossed to produce an F1 progeny. (B) The progeny can 
self-cross or undergo backcrossing to produce a segregating population. Individuals in the segregating population are 
analysed through (C) expression profiling, using transcriptomics techniques, and (D) molecular marker analysis, e.g. SNP 
genotyping. (E) eQTL mapping uses genotype and expression data to identify significant associations between SNPs and 
molecular traits (Jansen & Nap, 2001). 

 

eQTLs arise due to the structural variation of DNA which can be caused by several events, including 

sequence variation such as SNPs and small indels, rearrangements in the genome due to insertions, 

deletions and translocations, copy number variation, differences in the stability of mRNAs and allelic 

variants of transcription factors. eQTLs can be divided into two classes, namely cis- and trans-eQTLs, 

based on the location of the polymorphism responsible for the variation relative to the gene being 

expressed (Wolen & Miles, 2012). An example of each class is illustrated in Figure 1.2. A cis-eQTL 

regulates a gene if the gene’s expression level is associated with a nearby polymorphism located on 
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the same chromosome and this class generally makes up about 30-50% of the total eQTLs identified 

in a population (Joosen et al., 2009). Candidate genes associated with the variation in trait phenotypes 

can be prioritised when they have a cis-eQTL at the same genomic location as a QTL for the 

phenotypic trait. This is because the observed variation in the phenotypic trait is linked to a specific 

locus, where a cis-acting polymorphism causes the associated gene to be produced in variable 

quantities (Wolen & Miles, 2012). 

 

 

Figure 1.2: Classification of eQTLs. eQTLs are classified based on the position of a polymorphism (black triangle) 
relative to the gene being expressed. A) In the wildtype, a transcription factor (TF) (red) binds to the promoter regions 
(grey) of gene A (green) and gene B (blue) and activates their transcription. The bar graph indicates that all the genes are 
fully transcribed. B) A polymorphism is present in the promoter region of gene A, preventing the TF from binding. This 
results in a reduced transcription rate for gene A, whereas gene B remains fully transcribed. Gene A is therefore under 
regulation of a cis-eQTL. C) A polymorphism is present in the DNA binding region of the TF, preventing the TF from 
binding to any downstream gene promoter regions. Both gene A and gene B have reduced transcription rates and all 
downstream genes under regulation of the mutated TF will be linked to a trans-eQTL at the site of this polymorphism. 
Image from Wolen and Miles (2012).  

 

In contrast to cis-eQTLs, a trans-eQTL regulates a gene if the expression level is associated with a 

polymorphism located elsewhere on the genome, far away from the gene itself (Wolen & Miles, 

2012). A cis-eQTL is essentially only associated with the gene in which it occurs, whereas multiple 

trans-eQTLs can arise throughout the whole genome from only one causal gene. Key-regulators, such 

as transcription factors, can explain the identification of trans-eQTL hotspots throughout the genome 

as they have major effects on the expression of downstream genes. This can play an important role in 
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disease susceptibility, for example, as conventional breeding strategies can select for or against 

segregating trans-eQTLs (Kadarmideen et al., 2006). However, QTL studies have indicated only a 

few examples where hotspots with significant effects on the biological system were detected, 

suggesting that most of the variation in the genotype is buffered against in the phenotype (Joosen et 

al., 2009).  

 

The application of genetical genomics approaches to identify eQTLs allows us to study gene 

expression and gain insight into the basis of complex traits. In a study done by Drost et al. (2010), 

genetical genomics was used to identify transcriptional networks in three different tissues (xylem, 

leaf, and root) of an interspecific hybrid population of Populus. The authors detected pleiotropic 

hotspots, where one gene affects multiple phenotypic traits, and used these to construct co-expression 

networks that showed significant enrichment for genes in gene ontology (GO) functional categories 

and regulatory elements for transcription. When the transcriptional networks of the three tissues were 

compared, the authors found that the topology was commonly conserved, but that the transcriptional 

networks were regulated by different loci in each tissue. The authors also found that where shared 

eQTLs (i.e. eQTLs with peaks at the same locus) were identified in two organs, less than a third of 

the genes were regulated by the same locus in both organs. From this study, it appears that the genetic 

architecture of gene expression is significantly different between the different tissues. 

 

1.2.2 eQTL studies in plants and trees 

eQTLs are genomic regions that contribute to the variation in gene expression levels between 

individuals in a population. Candidate genes underlying specific phenotypic traits can be identified 

through correlation analyses of eQTLs with their respective trait QTLs and the construction of gene 

regulatory networks allows us to elucidate the basis of variation in phenotypic traits. The variation in 

these traits are caused by genetic polymorphisms (e.g. SNPs) and result from qualitative and 

quantitative differences in gene expression. In a population of plants, one can measure transcript 
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levels and treat the variation in each gene as a heritable trait that can be analysed through genetical 

genomics approaches, however, these analyses rely on natural genetic variation in the population 

being studied. The use of eQTL studies in plants also allow the analysis of candidate genes underlying 

quantitative traits without having to go through the time-consuming process of positional cloning 

(Druka et al., 2010). 

 

One important aspect of eQTL analysis in plant populations is experimental design, which can be 

divided into three major categories: (i) the type of population under study; (ii) the size of the 

population; and (iii) how replication and randomization is organized. Typically, when plant 

populations are studied, F1 hybrids or F2 backcross hybrids are used with a population size of 200 or 

more lines (although many studies using 100 lines have been successful) (Schön et al., 2004; West et 

al., 2007; Kadarmideen, 2008). eQTL studies need to have a suitable measure of replicate error to 

prove that genetic variation exists. Replicates of individual genotypes are also necessary as they allow 

the prediction of true within line variation. It is important to consider limited pleiotropy in plants, as 

it may play a significant role in adaptive traits such as quantitative age-related resistance. It may also 

indicate the presence of transcription factors that influence gene expression in a stage- or tissue-

specific manner (Druka et al., 2010). 

 

eQTL studies have been performed on many different plant species such as wheat (Jordan et al., 

2007), rice (Wang et al., 2010, 2014), maize (Shi et al., 2007; Swanson-Wagner et al., 2009; 

Holloway et al., 2011; Li et al., 2013; Christie et al., 2017), potato (Kloosterman et al., 2012), and 

Arabidopsis (Keurentjes et al., 2007; Wentzell et al., 2007; West et al., 2007). Several eQTL studies 

have also been done on hardwood species (Kirst et al., 2004, 2005; Drost et al., 2010; Mähler et al., 

2017; Mizrachi et al., 2017; Zhang et al., 2018), to identify genetic factors that are involved in 

complex traits (e.g. growth) and to determine how they interact in networks that predict the response 

of a system to changes in the genetic structure. In addition to studying changes in the genetic 
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architecture of gene expression in Populus during organ differentiation, Drost et al. (2015) also 

applied genetical genomics methods to identify a candidate gene and genetic elements that are 

responsible for regulation of variation in leaf morphology. In Eucalyptus species, genetical genomics 

studies have generally focused on how growth and lignin are regulated, identifying candidate genes 

involved in variation of wood traits and gene expression, and analysis of the genetic architecture of 

mRNA abundance in developing xylem tissue (Kirst et al., 2004; Kullan et al., 2012; Mizrachi et al., 

2017). 

 

1.2.3 Systems genetics and the genetic architecture of complex quantitative traits 

Systems genetics can be defined as the global analysis of molecular elements that are associated with 

the variation of physiological and phenotypic traits between all individuals within a population. 

Systems genetics analyses do not only study interactions between genes and their interaction with the 

environment, but also focus on intermediate phenotypic traits affected by variations in the DNA, such 

as levels of gene expression, proteins, and metabolites. Different systems genetics approaches are 

illustrated in Figure 1.3. One of the main benefits of using a systems genetics approach is the ability 

to study interactions on a molecular level by analysing multiple genetic perturbations, which 

represents natural populations under normal selective pressures and is most pertinent to the specific 

trait under study. It also allows one to analyse the genetic architecture of complex quantitative traits 

to identify the different properties of individual genes associated with variation in these traits (Civelek 

& Lusis, 2014). 
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Figure 1.3: Systems genetics approaches. Systems genetics studies can have simple or more complex designs based on 
the type of intermediate phenotype under study. (A) An example of a simple design would involve quantifying a single 
type of intermediate phenotype within a population and integrating it with complex traits through correlation analyses or 
mapping to chromosomes. In more complex designs, many intermediate phenotypes can be studied, which enables the 
investigation of interactions across different biological spaces. These phenotypes can also be used to model biological 
networks that are affected by environmental factors. (B) Intermediate phenotypes across different biological scales can 
interact with each other (indicated by arrows). These interactions can be used to construct a map based on natural variation 
within a population. (C) Biological networks can be modelled from trait correlations between individuals within a 
population. In this example, a directional expression network is constructed between four genes on the basis of their 
natural variation. Image adapted from Civelek and Lusis (2014). 

 

In order to have a complete understanding of the genetic architecture underlying complex quantitative 

traits, it is important to gain information on several factors: (i) the identities and total number of genes 

involved in all biological processes associated with the trait; (ii) the mutation rate at each locus 

containing these genes; (iii) the identities and total number of loci associated with the variation of the 

trait across populations, as well as within a single population, and across different species; (iv) how 

the trait is affected by any new mutations or segregating alleles; (v) any effects caused by epistatic 

interactions; (vi) any pleiotropic effects; (vii) all polymorphisms that define QTL alleles; (viii) QTL 

allele frequencies; and (ix) the mechanism underlying changes in the phenotype of the specific trait. 
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There is currently no quantitative trait that has been described at such a high resolution yet, therefore 

the combination of many different fields of genetics is required to work towards this (Mackay, 2001). 

 

Determining the genetic architecture underlying complex quantitative traits is a key challenge of 

systems genetics. This is because the variation observed between phenotypes is caused by interactions 

between many alleles that are sensitive to changes in the environment. Many studies have 

implemented systems genetics approaches to address the prevailing question of the underlying genetic 

basis of gene interactions. Ayroles et al. (2009) quantified the phenotypes and genome-wide transcript 

abundance of six ecologically important complex traits in Drosophila melanogaster. The study 

allowed them to predict genetic networks and gene functions, as well as to identify multiple candidate 

genes associated with variation in stress responses, life span, and behaviour. Park et al. (2011) 

integrated fear phenotypes, genotype information and transcriptome data from hippocampus and 

striatum tissue in mice to gain insight into the underlying genetic basis of memory and learning. The 

study enabled them to prioritise key markers and genes associated with fear phenotypes and to gain 

an increased understanding of genetic networks underlying behaviour. 

 

1.2.4 Co-expression network topology and the genetic architecture of gene 

expression 

Biological networks are scale-free networks that are buffered against random mutations and can be 

analysed to determine the relationship between the genetic architecture of gene expression and 

network topology. Mähler et al. (2017) used gene expression data for the construction of a co-

expression network to determine this relationship and relate it to signatures of selection. The authors 

performed eQTL mapping on a natural population of Populus tremula and identified thousands of 

significant eQTLs associated with unique genes and SNPs. The study showed that these unique genes 

were abundant in the network periphery, but underrepresented in module cores, and that the effect 

sizes of eQTLs had a negative correlation with network connectivity (i.e. the correlation of each gene 
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with all other genes in the network). The authors also found that connectivity was linked to signatures 

of selection, where it suggested that the genetic architecture of natural variation in gene expression is 

regulated by purifying selection and that connectivity within the network is associated with the 

strength of this selection. 

 

There are several factors that can influence the functional connectivity and topology of co-expression 

networks. Ballouz, Verleyen and Gillis (2015) examined RNA-seq co-expression data generated from 

1,970 samples with a Guilt-By-Association framework, where genes were evaluated to determine 

their tendency to reflect shared function through co-expression. The authors found two important 

factors that can have significant effects on functional connectivity, namely the number of samples 

and the read depth. Larger sample sizes and increased read depths allow networks to perform better 

and greatly increase the functional connectivity. The authors also saw that the functional connectivity 

of the network increased when multiple networks were combined and that there was a decrease in the 

amount of expression variation noise. The functional connectivity was not influenced by different 

machine learning methods, however, there was an effect on network topology. And finally, the 

authors determined that the network topology is affected by the type of data used (microarray vs. 

RNA-seq), due to changes that occur in the correlation of expression variation noise in the different 

technologies.  

 

In a study done by Fagny et al. (2017), eQTL analyses were used to construct networks that illustrate 

the relationships between gene expression levels and genetic variants in 13 human tissues. The 

authors found that three elements of the topologies of these networks inform regulatory function at 

tissue-level; (i) communities, which are highly modular groups of genes and SNPs, are enriched for 

genes with related functions, as well as for regulatory pathways and SNPs located in tissue-specific 

active chromatin regions; (ii) community hubs, also known as core SNPs which have a high 

connection to genes that are in the same community, are enriched for active chromatin regions located 
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close to transcriptional start sites; and (iii) global hubs, which are linked to multiple genes in the 

network, are enriched for distal elements. This study used eQTL analyses to produce complex 

networks of relationships that represent the polygenic architecture underlying different tissues, which 

aids in the understanding of the effects of genetic variants at a tissue-specific level. 

 

1.2.5 Systems genetics of wood formation in forest trees 

Wood formation is a complex process involved in the growth and development of woody plants. To 

improve wood properties of trees with industrially important phenotypes, this process can be 

modelled as a biological system to identify and better understand the roles of its key transcriptional 

and metabolic regulators. The biosynthesis of xylem tissue, which is responsible for water and 

nutrient transport in plants, is known as xylogenesis and is an extremely strong carbon sink under 

strong transcriptional and metabolic control. The regulation of these processes ultimately governs the 

development and properties of wood, which is of economical, ecological, and evolutionary 

importance (Mizrachi and Myburg, 2016).  

 

Modelling wood formation as a biological system involves the integration of several sets of 

information (Figure 1.4). Firstly, trees in a population can be genotyped to outline a genetic map and 

DNA markers can be used to tag the genetic variation between individuals in a population. This is 

done based on the level of linkage disequilibrium (LD), which defines the non-random statistical 

associations of alleles at different loci (Hansen, 2006). By determining metabolite levels and 

obtaining quantitative gene expression profiles through the profiling of transcriptomes, QTLs can be 

mapped and QTL- and co-expression networks can be constructed. A priori information, such as 

known regulatory relationships and targets for transcription factors, can be included along with wood 

properties and growth to infer directionality of interactions in networks. Integration of all this 

information allows for the construction of an effective systems model of wood formation (Mizrachi 

and Myburg, 2016). 
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Figure 1.4: Systems genetics of wood formation. Incorporating several sets of information into a systems model allows 
the construction of a working model of wood formation. This information includes the genotype, levels of gene expression 
and metabolites, and determining the genetic signal for their variation through mapping of eQTLs and metabolite QTLs. 
Prior knowledge of interactions and relationships of component data, along with wood property traits can be integrated 
to construct a systems model. Image from Mizrachi and Myburg (2016). 

 

Eucalyptus is an important renewable feedstock for manufacturing paper, pulp, timber, and more 

recently, biorefinery. It is one of the most widely planted hardwood species for forestry in South 

Africa and has superior wood qualities to most other hardwood species (Mizrachi et al., 2017). In 

2014, Myburg et al. published the complete genome assembly of Eucalyptus grandis, which has 

provided a powerful tool for modelling wood formation and gaining insights into the complex 

interactions between genotypic and phenotypic variation in Eucalyptus. The Eucalyptus genome 

integrative explorer (EucGenIE) was developed as a resource for genomics and transcriptomics 

studies in Eucalyptus (Hefer et al., 2011). As part of this resource, qtlXplorer was developed as a tool 

for querying and visualising systems genetics data using an interactive version of Circos (Christie et 

al., in preparation; Krzywinski et al., 2009). This provides a valuable resource to show how the 

integration of systems genetics with functional genomics will allow us to extract meaningful 

biological information from available data. 

 

Mizrachi et al. (2017) applied a network-based data integration (NBDI) method to developing xylem 

tissues from a segregating Eucalyptus hybrid population to gain a systems-level understanding of the 
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genes underlying important wood property traits, as well as the biological processes and pathways 

associated with these traits. By using an NBDI approach, the authors were able to prioritise genes and 

pathways associated with phenotypic traits by combining genotype data, gene expression data, and 

prior network information. The authors found that the phenotypic variation observed in these traits 

could be explained by the genetic variation segregating in the population, as this affected genes and 

pathways underlying wood property traits. Wang et al. (2018) performed a multi-omics integrative 

study on lignin formation in Populus to improve wood properties. The analysis determined the effect 

of gene expression changes on several phenotypes, such as protein abundance and wood property 

traits. Predictions could then be made on improvements in these traits through genetic engineering. 

This multi-omics approach also provides a strategy for analysing other biological pathways to better 

understand the processes of growth, metabolism, and adaptation in plants. 

 

1.2.6 Machine learning in systems biology 

Machine learning is a branch of artificial intelligence which aims to develop and apply computer 

algorithms that can learn and improve with subsequent runs, using training models. Machine learning 

algorithms are robust tools for classifying large data sets from complex systems and some of the most 

popular uses for them include speech, text and image recognition (Mohri, 2012; Kim & Kim, 2018). 

There are generally three stages in a machine learning process: (i) an algorithm is developed; (ii) a 

training data set is provided, which consists of known (labelled) and unknown (unlabelled) data, after 

which the labelled data are processed and stored in a model; and (iii) subsequent unlabelled data are 

provided for which the model then predicts labels. Machine learning algorithms can be supervised, 

unsupervised, or semi-supervised. Supervised learning methods make use of algorithms that are 

trained by labelled data to predict labels of unknown data, whereas unsupervised learning methods 

do not require labelled data and the aim is to find structure in the data. 
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One of the key objectives of systems biology is to gain a systems-level understanding through 

computational biology. Computational systems biology includes several elements of bioinformatics 

and is concerned with the identification of patterns in large collections of data, subsequent formation 

of hypotheses, and performing simulation-based analyses to test these hypotheses in silico and predict 

system dynamics (see review by Kitano, 2002). Four key elements provide insight into this systems-

level understanding: (i) structure of the system, such as gene interaction networks; (ii) dynamics of 

the system, indicating how the system reacts under varying conditions; (iii) method of control, where 

mechanisms that control the cell state can be targeted; and (iv) method of design, where simulations 

can be used to plan strategies for modifying the system (Kitano, 2007). Machine learning approaches 

have been applied in genetics and genomics studies for a wide variety of uses, such as identifying 

locations of transcription start sites (Ohler et al., 2002), predicting genomic susceptibility to cancer 

(Kim & Kim, 2018), predicting promoter regions (Oubounyt et al., 2019), and predicting disease risks 

from SNPs for precision medicine (Sik et al., 2019). Expression data from RNA-seq, can also be used 

as input by machine learning algorithms to differentiate between different phenotypes and to detect 

possible important biomarkers, such as those indicating diseases (Sun & Markey, 2011). These 

algorithms are also largely used for assigning functional annotations to genes, mostly in the form of 

GO terms (Ashburner et al., 2000; Libbrecht & Noble, 2015). 

 

As reviewed by Libbrecht and Noble (2015), machine learning algorithms are frequently used in 

systems genetics approaches to predict shared functional relationships between genes to construct co-

functional networks, where nodes represent genes and edges represent shared functions. These 

algorithms can also be used to train network models which can model gene expression across the 

entire genome, allowing us to better understand the underlying biological mechanisms of gene 

expression. The prediction of genes and proteins that are essential to the survival of an organism is 

another important application of machine learning and integration of network topology properties, as 

attributes for algorithm training greatly improves the prediction of these genes (Zhang et al., 2016). 
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Machine learning methods also allows us to identify candidate genes and predict the functions of co-

expression networks for further downstream analyses (Lee et al., 2009). 

 

1.3 Bioinformatics Strategy Towards Systems Genetics Analysis 

1.3.1 Transcriptome profiling using next-generation sequencing 

RNA sequencing 

RNA sequencing is an approach that makes use of deep-sequencing technologies to profile the 

transcriptome. Compared to older microarray methods, this profiling technique has two new features 

that are important for eQTL studies: firstly, it provides information on allele-specific expression 

(ASE), where hybrids express one parental allele over the other, and secondly, it produces 

exceptionally rich data with high coverage that enables the study of RNA-isoform expression. In 

addition, when comparing co-expression networks from microarray and RNA-seq data, major 

differences are observed in their topology where there is little overlap from each network between 

hub-like (highly connected) genes. These differences are caused by changes that occur in the 

correlation of expression noise in the different technologies (Ballouz et al., 2015). To generate raw 

RNA-seq reads, mRNA is purified and extracted where it is either first fragmented and then reverse 

transcribed to cDNA, or first reverse transcribed and then the cDNA is fragmented. Finally, short 

double-stranded cDNA is produced and adapters are ligated for next-generation sequencing (Sun & 

Hu, 2013). Because current protocols can often not precisely quantify samples containing a large 

amount of degraded RNA, Miller et al. (2017) developed a protocol known as complete transcriptome 

RNA-seq that allows for the collection of qualitative data and aims to produce quantitative stranded 

data for the whole transcriptome. 

 

Tag-seq, also known as Digital Gene Expression (DGE-seq), is a tag-based approach that makes use 

of deep-sequencing methods to profile gene expression. To generate tag-seq data, mRNA is attached 
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to beads via poly(A) tails, cDNA synthesis occurs on the beads, double-stranded cDNA is digested 

with a frequent cutting restriction enzyme, and the residual 3’ fragments are ligated to the 5’ end 

adapter that has a binding site for the tagging enzyme. The cDNA is cleaved by the tagging enzyme 

and produces a 21 bp tag that is ligated to an adapter at the 3’ end before PCR amplification and 

sequencing of the cDNA. A popular tag-based method is 3’ end sequencing, which detects transcripts 

based on either the differences in their 3’-terminal exon or the length of their 3’ untranslated region. 

This approach simplifies data processing and allows for the detection of rare transcripts, but its 

reduced library complexity raises the issue of PCR duplicates that distort gene expression levels (De 

Klerk et al., 2014). 

 

Gene expression can also be measured at the single-cell level to account for the loss of co-expression 

patterns between genes and the presence of different cell types when cells are bulked. This technique 

can be challenging, as single cells need to be isolated and the methods for cDNA library preparation 

are very sensitive with low RNA inputs (Hrdlickova et al., 2017). State-of-the-art technologies, such 

as MR-seq that measures a single cell repeatedly, are able to characterize transcriptomes inside single 

cells and can measure each cell’s transcriptome repeatedly to statistically assess the technical 

variation, allowing the identification of differentially expressed genes between just two single cells 

(Yang et al., 2017). The multiplex sequencing technique uniquely tags samples from each cell with 

short identifying sequences called barcodes and are then sequenced together in a single lane. Before 

analysis can begin, the sequences are sorted by their barcodes so that the transcriptome of each 

individual cell can be assembled separately. This allows for large numbers of samples to be sequenced 

together, making complete genome studies much more affordable (Wong et al., 2013). 

 

Mapping algorithms 

Once RNA-seq reads have been obtained and processed they need to be mapped to the reference 

genome with an alignment software to determine where the genes are located. There are two possible 
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algorithms available for aligning RNA-seq reads to the reference, namely “spliced” or “unspliced” 

aligners. Unspliced aligners allow reads to map to a reference without large gaps and are ideal for 

quantification purposes, but do not allow for the identification of novel exons or splice junctions 

(Garber et al., 2011). Two popular software currently available for unspliced alignment (alignment 

of continuous reads) are Bowtie2 (Langmead & Salzberg, 2012) and the Burrows-Wheeler Aligner 

(BWA) (Li & Durbin, 2009). Both make use of a Burrows-Wheeler transform method to create an 

index of the genome, while others are based on Needleman-Wunsch or Smith-Waterman algorithms 

that are more sensitive but much slower, as reviewed by Porter, Berkhahn and Zhang (2015).  

 

Unbiased or spliced aligners typically make use of a Smith-Waterman algorithm to determine the 

exact spliced alignment for each read, allowing for the identification of novel exons and splice 

junctions. Examples of available spliced aligners include GSNAP (Wu & Nacu, 2010), STAR (Dobin 

et al., 2013), HISAT (Kim et al., 2015) and TopHat (Trapnell et al., 2009). HISAT uses a global 

index, similar to suffix arrays, as well as multiple small indexes to enable the effective alignment of 

reads that span multiple exons, whereas TopHat first aligns unspliced reads with Bowtie and then 

identifies splice junctions from the initial unmapped reads. GSNAP significantly reduces mapping 

bias, where non-reference alleles do not match to the reference sequence, and is useful for ASE 

studies, digital gene expression, and genotyping of SNPs and indels. STAR uses uncompressed suffix 

arrays for the alignment of full-length, long and short RNA-seq reads and can detect canonical 

junctions, non-canonical splices, and chimeric transcripts.  

 

RNA-seq reads that contain non-reference alleles have a tendency of not mapping to the reference 

genome sequence, which means that gene quantification results may be biased and there is a 

possibility of false positive eQTL correlations arising. To assess the effect of allelic mapping biases 

on the discovery of eQTLs, Panousis et al. (2014) simulated RNA-seq read alignment with BWA 

over common variants and analysed the mapping bias rate for reference vs. non-reference reads. The 
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authors found that removing RNA-seq reads that were possibly biased had little effect on the 

discovery of eQTLs and gene quantifications, with only a few potential false positive eQTLs being 

detected. The results suggest that the detection of eQTLs and quantification of RNA-seq data is 

typically not affected by mapping bias. However, when working with RNA-seq and eQTL data this 

mapping bias could possibly imitate a biological signal indicating an association between the 

genotype and gene expression. It is therefore purely good practise to use an unbiased aligner when 

studying eQTL data. 

 

Transcript quantification 
RNA-seq technologies produce millions of short reads that provide digital counts when mapped to 

the reference genome and therefore allows the quantification of transcripts. Inferring transcript 

abundance is a necessary step when performing quantitative analyses, such as eQTL detection, as the 

observed read counts only offer an average of all the sequences expressed at a given locus (Bohnert 

et al., 2009). A few examples of popular software available for transcript quantification include 

Cufflinks (Trapnell et al., 2010), Kallisto (Bray et al., 2016), Salmon (Patro et al., 2017) and 

StringTie (Pertea et al., 2015). To avoid alignment of bases to the reference, Kallisto implements the 

concept of “pseudoalignments”, which produces a list of transcripts compatible for each read. These 

pseudoalignments are essentially the relationship between each read and a set of compatible 

transcripts, generated through the use of k-mers and de Bruijn graphs. Salmon produces “quasi-

alignments” produced by an ultra-fast internal aligner and makes use of k-mer based counting to 

directly quantify transcripts. It is the first software for whole-transcriptome quantification that is able 

to correct for GC-content bias in fragments, which increases the accuracy of transcript abundance 

estimates (Bray et al., 2016; Patro et al., 2017; Zhang et al., 2017).  

 

A comparative study done by Zhang et al. (2017) showed that recently-developed software 

implementing alignment-free methods, such as Kallisto and Salmon, generally had decreased 
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computation times with relatively equal or even higher accuracies compared to those using alignment-

dependent methods, such as Cufflinks. For gene-level quantification, which is generally more 

accurate than transcript-level quantification, other software that was not included in the comparative 

study (e.g. StringTie) can be considered. StringTie provides the option of applying two approaches: 

(i) transcriptome assemblies are built from genome-guided alignments; and (ii) de novo transcriptome 

assemblies are used to reconstruct transcripts. Unlike other software, StringTie assembles transcripts 

and estimates their expression levels simultaneously. The software was compared to other leading 

transcript assembly software at that time, such as Cufflinks, and was shown to produce a more 

complete assembly at faster computation times (Pertea et al., 2015; Salzberg, 2016). 

 

1.3.2 Genetic markers and eQTL mapping  

In past studies, microarrays were used to measure the expression levels of genes across segregating 

populations to conduct association analyses across the entire genome, referred to as eQTL mapping. 

It is a statistical method that identifies possible genomic regions responsible for regulating transcript 

expression by correlating polymorphisms segregating in a population with quantitative measurements 

of mRNA expression. Individuals in the population are genotyped across a panel of genetic markers 

within a genetic linkage map, which represent differences between individual species, but it may be 

difficult to determine which factors are responsible for variation in expression due to linkage 

disequilibrium and the distances between markers, as each marker may be located close to multiple 

genes (Li & Deng, 2010).  

 

Genetic markers can either be dominant (such as Diversity Array Technology (DArT)-based PCR 

markers) or co-dominant (such as SNP markers), based on whether or not they are able to distinguish 

between homozygous and heterozygous genotypes. A dominant marker has only two alleles and is 

most commonly either random amplified polymorphic DNA (RAPD) or an amplified fragment length 

polymorphism (AFLP). Co-dominant markers, on the other hand, can have many different alleles and 
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are most commonly restriction fragment length polymorphisms (RFLPs) or simple sequence repeats 

(SSRs), also known as microsatellites. Some advantages and disadvantages of each type of DNA 

marker are listed in Table 1.1. Genetic linkage maps can be constructed by calculating the linkage 

between DNA markers, using logarithm of odds (LOD) scores, which represents the ratio of linkage 

to no linkage between markers (Collard et al., 2005). These genetic linkage maps are useful for 

examining patterns of inheritance of complex quantitative traits across the genome and can be 

constructed by popular programs such as JoinMap (Stam, 1992). 

 

Table 1.1: Advantages and disadvantages of common molecular DNA markers in QTL analyses 

Molecular 
marker 

Dominant or 
Co-dominant 

Advantages Disadvantages 

RAPD Dominant 
Quick, simple, and inexpensive. Requires 
small amounts of DNA and multiple loci 

from a single primer are possible. 

Has problems with reproducibility 
and are generally not transferrable. 

RFLP Co-dominant 
Robust, reliable, and transferrable across 

populations. 

Time-consuming and expensive. 
Requires large amounts of DNA and 

has limited polymorphisms, 
especially in related lines. 

AFLP Dominant 
Multiple loci possible with high levels of 

polymorphisms generated. 
Requires large amounts of DNA and 

has a complicated methodology. 

SSRs Co-dominant 
Technically simple, robust, reliable, and 

transferrable across populations. 

Requires a lot of time and labour to 
produce primers and requires 

polyacrylamide electrophoresis. 

 

In more recent studies, microarrays have been replaced by RNA-seq, allowing the use of ASE in 

eQTL mapping to compare the expression of both alleles at a heterozygous SNP. ASE of a gene refers 

to the allele-specific transcript abundance, as each gene in a diploid individual has one paternal and 

one maternal allele. Generally, a cis-eQTL can modify the expression of the two alleles in different 

ways, therefore ASE can be used to distinguish between cis- and trans-eQTLs (Sun & Hu, 2013). 

Wang, Richard and Pan (2016) proposed a guided eQTL mapping method that makes use of data-

driven prior knowledge to identify candidate genes. This method uses QTL analyses to identify SNP 

markers linked to specific traits, after which co-expressed gene modules that are significantly linked 
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with those traits are selected. The authors used the least absolute shrinkage and selection operator 

(Lasso) to perform eQTL mapping, where a single gene is associated with multiple SNPs. Other 

popular tools that are available for the mapping of QTLs are compared in Table 1.2 (Basten, Weir 

and Zeng, 1994; Shabalin, 2012; Ongen et al., 2015).
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Table 1.2: Review and comparison of popular software available for mapping of QTLs 

 FastQTL QTL cartographer Matrix eQTL 
General information Interactive package for mapping QTLs (multi-trait 

or multi-environment complexes) in real data and 
extensive simulations 

A suite of programs in C (programming language) 
used for mapping quantitative trait loci 

An intuitive MS-Windows user interface software 
used for mapping quantitative trait loci in 

experimental populations 
Mode of Operation Windows-based, flexible, extremely user-friendly 

graphic interface for research and all levels of 
teaching. A classroom version is underway 

UNIX based, command-line interface (the option of 
interactive mode presents the user with a menu of 

numbered options) 

Graphical user interface allows an intuitive ease of 
use 

Known limitations Composite interval mapping option is not available 
yet although more important multiple interval 

mapping (MIM) is available 

The Windows version of QTL Cartographer either 
does the conversions on a Windows machine, or ftp 

the files to the Windows machine as text 

Relatively poor spectrum of main types of analysis 
(e.g. no multiple trait analysis combined with MIM) 

Mapping population Backcross, F2, Dihaploids, RIL selfing, RIL sib 
mating, F2/F3, F2/4 and multiple families for all 
these. Underway: double backcross, recombinant 

intercross, F3, outbred full-sib 

Backcross and F2 designs. Analysis of either 
simulated or real data. Other experimental designs 

can be incorporated 

Experimental population types: BC1, F2, RIL, DH 
and outbred full-sib family 

Model fitted Marker or interval analysis, single- or two-linked 
QTLs, single, two- or multiple-trait analysis, QTL-
E; all these with MIM. Multiple families; selective 

genotyping 

Single-marker analysis, interval mapping, 
composite interval mapping, Bayesian interval 

mapping, MIM, MIM, multiple-trait analysis QTL-
E, pleiotropic effects 

Interval mapping, MQM mapping, nonparametric 
mapping with the Kruskal-Wallis rank sum test per 

marker 

Compatibility Map orders can be imported from several formats or 
from the new powerful package MultiPoint (fast 

ordering of many hundreds of markers per 
chromosome with verification of the map by jack-

knifing; allows building consensus maps) 

Genetic linkage map data can be imported from 
MAPMAKER, results can be displayed graphically, 

or printed using Gnuplot, or imported into any 
graphics package on any computing platform 

Input in plain text files with a flexible layout of the 
QTL data, marker genotypes and the (precalculated) 
linkage map; map and molecular marker data files 

are compatible with JoinMap 

Significance testing Permutation and bootstrap tools; FDR for total 
analysis 

Permutation analysis Permutation analysis 

Operating systems MS-windows; because of very fast algorithms can 
also run on Macintosh under PowerPC 

Unix, Macintosh, and Microsoft Windows MS-windows 
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1.3.3 Network construction 

Gene co-expression networks are undirected graphs consisting of nodes and edges. Each node 

represents a gene and nodes are connected if there is a significant co-expression between the 

corresponding genes across a sample. Edges therefore represent functional relationships (i.e. 

interactions) between genes. Zhang and Horvath (2005) proposed a framework for ‘soft’ thresholding 

where numerous adjacency functions convert the measure of co-expression to a connection weight 

which is assigned to each pair of genes. Each resulting co-expression network matches up with an 

adjacency matrix that specifies the strength of connection between a pair of genes and therefore 

defines the node connectivity. The weighted networks present node connectivity measures, a measure 

of topological overlap, and a clustering coefficient that is not inversely related to node connectivity. 

A flow diagram listing the steps of co-expression network construction is shown in Figure 1.5. 

 

 

Figure 1.5: Weighted gene co-expression network analysis. Firstly, a gene co-expression similarity needs to be defined, 
which measures the consistency of gene expression across samples. The next step is to define a family of adjacency 
functions to determine whether the network will be weighted or not and to construct an adjacency matrix. The adjacency 
function parameters then need to be determined, which will regulate the node connection strength sensitivity and 
specificity. Gene modules, which are groups of nodes that have a high topological overlap between them (i.e. are highly 
co-expressed), are identified by defining a node dissimilarity measure. Clustering methods, along with the dissimilarity 
measure, are used to group genes into modules and construct the network. Network concepts can then be related to each 
other and to external information on genes and samples using standard statistical methods. Image from Zhang and Horvath 
(2005). 
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A posteriori approaches can use eQTL data to identify novel gene networks and the regulators 

underlying them, either by determining the correlation between expression patterns or utilizing the 

co-localization of eQTL locations to identify gene clusters or networks. This approach requires the 

network under study to be known or predicted before analyses can be done. After novel networks 

have been identified, eQTLs can be categorized as either cis or trans and assessed to determine 

whether they are involved in network regulation (Hansen et al., 2008). Some emergent properties of 

networks include: (i) the association between connectivity and the strength of selection pressures; (ii) 

the ability to infer biological knowledge from network topology and gene modules; and (iii) the 

association between criticality, network topology, and the phenotypic landscape evolvability (Torres-

Sosa et al., 2012; Mähler et al., 2017; Vella et al., 2017). 

 

1.4 Conclusion 

In this review, we discussed the state-of-the-art in systems biology for complex trait dissection and 

high throughput RNA-seq analysis in plant populations. One of the most noticeable trends recently 

observed in systems biology is the modelling and reconstruction of gene networks, as they are 

responsible for carrying out and regulating important biological pathways and functions. Studying 

the variation in topology of these networks is necessary, as it can most likely lead to variations in 

complex traits and phenotypes. The advent of genome-wide association studies (GWAS) and QTL 

studies have allowed the identification of genetic variations that are linked to these traits and 

phenotypes through the analysis of thousands of SNPs. 

 

Approaches to complex data in the future will need to look at each biological system as a whole, by 

combining information from multiple biological scales including genes, transcripts, proteins, 

metabolites, microbiomes, and physiological traits. To gain a systems-level understanding of these 

components, computational models of the different scales can be built and integrated to identify where 

there is a lack of knowledge or to predict new responses of the biological system. These models 
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should include the expression of DNA and genes, intracellular networks, transmembrane signals, 

signals between cells, and possibly even models at the organ level (Finkelstein et al., 2004). The 

importance of machine learning and artificial intelligence in systems biology is constantly growing, 

as it is vital for analysing large amounts of complex data and used to train network models that can, 

for example, allow the identification of candidate genes and predict functions of co-expression 

networks. 

 

It is important for us to determine the genetic architecture underlying complex wood property traits 

in Eucalyptus hybrid trees, as this will allow us to identify genes and pathways that interact to 

determine complex trait outcomes. We can use this knowledge to engineer or breed for these traits 

with the aim of gaining specific biotechnology outcomes, while avoiding negative effects on plant 

growth. In this study, we aim to gain a systems biology understanding of the genetic architecture of 

gene expression variation underlying complex phenotypic variation for wood growth and 

development in segregating populations of mature field-grown Eucalyptus trees. We can compare 

systems genetics data between a three-year-old and eight-year-old population to determine the 

conservation of eQTLs and the genetic architecture across age in the same trees and to establish 

whether data from different ages can be used to prioritise candidate genes for genetic engineering. 
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2.1 Summary 

Systems genetics approaches aim to understand the flow of biological information underlying 

complex traits by quantifying intermediate phenotypes, such as gene expression levels. To 

characterise the genetic architecture of genes involved in xylogenesis and analyse the age-to-age 

correlation of xylem gene expression, we performed whole-transcriptome sequencing of developing 

xylem tissue from 156 individuals in an interspecific Eucalyptus hybrid population sampled at 

juvenile (3.5 years) and rotation age (8.5 years). For the first time, we were able to construct a robust 

genetic linkage map by extracting SNP genotypes from population-wide transcriptome data of highly 

expressed genes. The genetic framework map consisted of 236 markers distributed over 11 linkage 

groups, spanning 1,008 cM with an average interval size of 4.5 cM. This genetic map, together with 

existing bioinformatic pipelines for eQTL data analysis and co-expression analysis, allowed us to 

rapidly identify biologically enriched eQTL hotspots and gene expression modules to build systems 

models of gene expression variation in xylem tissue from transcriptome data alone. This approach 

not only allowed us to identify regulatory polymorphisms affecting gene expression at different 

developmental stages, it also enabled us to determine the genetic correlation for a variety of complex 

traits and establish whether the underlying genetic basis for variation remains conserved across age. 

Age-to-age correlation of systems genetics data in the same population allowed us to identify novel 

and conserved regulatory polymorphisms acting at different ages. This also enabled us to compare 

the genetic architecture across age, which will ultimately establish whether systems genetics data 

from different ages can be used to prioritise candidate genes for genetic engineering. 
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2.2 Introduction 

The development of secondary xylem (xylogenesis) is a complex process involving thousands of 

genes that determine the chemical and physical properties of wood, as well as intricate molecular 

networks underlying phenotypic variation (Kirst et al., 2004; Dharanishanthi & Ghosh, 2016). Apart 

from providing raw materials such as paper, pulp and timber, wood is also an economically important 

renewable energy source and provides energy-efficient building materials (Plomion et al., 2001; 

Mizrachi & Myburg, 2016). The quality of these products is dependent on the combined woody 

biomass properties of the tree, including wood density, growth, and wood chemistry, which are 

difficult to improve in long-lived species such as Eucalyptus. Eucalyptus plantations have emerged 

as key renewable feedstocks due to their fast growth, exceptional wood properties and high 

adaptability and Eucalyptus hybrids with specific genotypes have been extensively propagated due 

to their unique hybrid properties (Mizrachi et al., 2017). These hybrids are especially appropriate for 

characterising the genetic architecture underlying complex wood property traits and the natural 

variation in transcript abundance (Kirst et al., 2005).  

 

To better understand the mechanisms underlying variation in complex wood property traits, systems 

genetics approaches can be used to gain insight into the relationship between the genotype and the 

phenotype to understand how these traits are regulated at a genetic level and to dissect the molecular 

networks underlying phenotypic variation (Blein-Nicolas et al., 2019). These approaches can 

combine population-wide genetical genomics and gene co-expression analyses to produce systems 

genetics models that characterises the genetic architecture of transcript abundance (Feltus, 2014). 

Genetical genomics involves the identification and mapping of expression quantitative trait loci 

(eQTLs), which describe the association of genotypic variation with variation in transcript abundance 

in a segregating population (Jansen & Nap, 2001). Gene co-expression analyses attempt to divide 

genes with highly correlated expression patterns into modules, which suggests that genes in the same 

module are under the same transcriptional control and that each module can be enriched for one or 
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more related biological processes (Zhang & Horvath, 2005). Phenotypic data, such as wood 

biorefinery traits, can also be integrated into systems genetics models to identify candidate genes 

associated with variation in the phenotype (Christie et al., 2017). Understanding the genetic 

architecture underlying complex wood property traits will guide the application of marker-assisted 

selection for breeding, which is especially desirable in forest trees due to their long reproductive 

cycles and the time it takes for them to express mature traits (Thavamanikumar et al., 2013).  

 

As reviewed by Myburg et al. (2019), many studies have explored the genetic architecture of gene 

expression variation in trees and have reported different results in natural populations (Mähler et al., 

2017; Zhang et al., 2018) and pedigrees (Kirst et al., 2005; Drost et al., 2010), which suggests that 

the genetic background of a population is an important factor to take into account when inferences 

are made from the evidence in a wider context. As far as we know, only one true systems genetics 

study on Eucalyptus has been reported (Mizrachi et al., 2017), with others only focusing on genetical 

genomics approaches (Drost et al., 2015). Although much research has been done on the relationship 

between variation in complex wood property traits and genes involved in xylogenesis, there is still 

much to uncover about the regulatory effect of the genetic variation underlying these traits. Gaining 

a systems biology understanding of the genetic architecture of gene expression variation underlying 

growth and wood property traits in Eucalyptus hybrids will allow us to identify genes and pathways 

that interact to determine complex trait phenotypes. This will allow us to engineer or breed for these 

traits with the aim of gaining specific biotechnology outcomes, while avoiding negative effects on 

plant growth. 

 

Here, we characterise the genetic architecture of xylem gene expression at rotation age and perform 

a comparison of the genetic architecture of genes involved in xylogenesis between juvenile and 

mature trees using an integrative systems genetics approach. We identify possible developmental and 

stress-related changes between juvenile and mature trees, which provides new insight into the 
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regulation of genes related to abiotic stress response in developing xylem. The three-year-old 

population mentioned here has already been analysed and discussed extensively (Mizrachi et al., 

2017; Christie et al., in preparation), whereas the eight-year-old population was sequenced recently. 

We repeated all analyses on the three-year-old population in parallel with the eight-year-old 

population using the same bioinformatics pipeline to eliminate as many technical differences or 

inconsistencies as possible that may affect the accuracy of the comparison. This also allows us, for 

the first time, to generate a genetic map derived from over 250 xylem transcriptome SNPs that is the 

same for both populations. Our paper mainly focuses on the genetic architecture of xylem gene 

expression for the eight-year-old population and concludes with an age-to-age comparison of the 

genetic architecture between juvenile and mature trees. Due to the fact that the eight-year-old trees 

were clonally propagated, we report for the first time on the heritability of the xylem transcriptome. 

 

2.3 Materials and Methods 

2.3.1 Plant materials 

The population under study is an interspecific F2 backcross population that was derived from a 

Eucalyptus grandis x E. urophylla F1 hybrid used as pollen parent (GUSAP1, Sappi, South Africa) 

and an E. urophylla seed parent (USAP1), both previously described by Kullan et al. (2012). The 

population consists of 308 seedling progeny and 375 clonal progeny that were sampled at three and 

eight years of growth respectively. The trial site is located near Kwambonambi in KwaZulu-Natal 

(Sappi, South Africa) which is on a flat coastal land with deep sandy soils and little spatial variation 

(Kullan et al., 2012). 

 

2.3.2 mRNA library preparation, sequencing, and expression profiling 

Immature xylem samples were collected as described by Mizrachi et al. (2017) from 156 and 144 

trees at three and eight years of growth respectively. Three-year-old samples were sent to the 
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genomics service provider, Beijing Genomics Institute (BGI), on dry ice for total RNA extraction and 

RNA sequencing (30 million, Illumina PE50, BGI Hong Kong). Eight-year-old samples were sent to 

Novogene on dry ice for mRNA extraction, eukaryotic strand-specific RNA-seq library preparation, 

and RNA sequencing (30 million, Illumina HiSeq-PE150, Novogene Hong Kong). Four random 

samples from the eight-year-old population were sequenced in duplicate to gain insight into the 

technical repeatability of the RNA sequencing. Quality control of the raw RNA-seq reads was 

performed with FastQC v0.11.7 (Andrews S., 2010) and reports for all the samples were aggregated 

into a single report with MultiQC v1.6 (Ewels et al., 2018). Reads were aligned to the reference 

genome assembly of E. grandis v2.0 (Myburg et al., 2014) using STAR v2.6 (Dobin et al., 2013) and 

transcripts were quantified in Transcript Per Kilobase Million (TPM) values using StringTie v1.3.4 

(Pertea et al., 2015). The genetic architecture was compared across age based on correlations within 

each dataset, therefore technical differences due to different generations of sequencers were ignored. 

 

2.3.3 SNP calling on RNA-seq data and sample filtering 

Transcript-derived SNPs were extracted using the Genome Analysis Toolkit (GATK) best practices 

pipeline for SNP calling in RNA-seq data (van der Auwera et al., 2013). Read groups were first added 

to aligned reads to allow genotyping of each sample individually and PCR duplicates were marked 

using Picard Tools v2.17.11 (http://broadinstitute.github.io/picard). The GATK SplitNCigarReads 

tool was used to split reads into exons and clip sequences overhanging into introns. Variant calling 

was performed using the HaplotypeCaller tool and indels were removed using the SelectVariants 

tool. Hard filters were then applied to the resulting set of SNPs with the VariantFiltration tool’s 

default parameters and converted to a user-friendly table format using the VariantsToTable tool. For 

the eight-year-old population, an identity-by-descent (IBD) analysis was performed with the SNP & 

Variation Suite v8.8.3 (Golden Helix, Inc., Bozeman, MT, www.goldenhelix.com) to confirm 

whether all the samples belonged to the same backcross family and eliminate clonal or technical 

replicates, as this dataset had not been analysed previously. This was done by comparing genotypic 
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data previously generated (unpublished) using the EuCHIP60K SNP chip (Silva‐Junior et al., 2015) 

with the transcript-derived SNPs, as well as doing an all-by-all comparison with the transcript-derived 

SNPs. Finally, the Weighted Gene Co-expression Network Analysis (WGCNA v1.66) package in R 

(Langfelder & Horvath, 2008) was used to cluster samples based on their expression profiles to 

identify outliers in the dataset and confirm technical and clonal replicates. 

 

2.3.4 Genetic linkage map construction from transcriptome data 

Engelbrecht et al. (unpublished) identified around 2000 SNPs within highly expressed genes in the 

three-year-old population that could be used as testcross markers to construct a genetic linkage map 

for the F1 hybrid parent. Testcross markers have a 1:1 segregation pattern (nnxnp), where the marker 

is homozygous in the E. urophylla (maternal) parent and heterozygous in the F1 hybrid (paternal) 

parent. The genotypes for these SNPs were extracted for the eight-year-old individuals using the same 

method described previously for deriving SNPs from transcriptome data. A minimum coverage of 10 

and a call rate of 0.75 per marker was used as cut-off for constructing a high-density genetic map, 

whereas a more stringent call rate of 0.9 was used for the framework map. Around 800 markers were 

analysed using JoinMap 4.1 (Van Ooijen, 2006) where a genotype frequency was calculated for each 

locus to determine the segregation distortion (i.e. significant deviation from expected Mendelian 

ratios) using a Chi-square test (χ2). Markers were sorted into linkage groups based on an independence 

logarithm of odds (LOD) score calculated for the recombination frequency and a LOD score threshold 

of four was used. Regression mapping was then performed on each linkage group using Kosambi’s 

mapping function with default mapping parameters. Markers with a nearest neighbour (NN) fit (cM) 

value ≥ 3 were manually removed and mapping was repeated until we were left with a high-density 

map where all the markers were in the correct order. A genetic framework map was then derived from 

the high-density map by pruning markers to achieve a spacing of 4-5 cM. Markers with a call rate 

below 0.9, poor goodness-of-fit, or incorrect ordering were manually replaced one-by-one until all 

the markers fit well within the linkage group. The genetic positions of the framework map were 
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aligned to the physical map (E. grandis v2.0 assembly) and visualised with MapChart (Voorrips, 

2002). 

 

2.3.5 Gene co-expression analysis 

Co-expression networks were constructed with WGCNA by assigning genes with highly correlated 

expression profiles to co-expression modules, based on Pearson correlations. A soft-thresholding 

power of four was selected to build an adjacency matrix. The scale-free topology criterion suggests 

that a soft-thresholding power (adjacency function parameter) should be chosen that will result in a 

network with a scale-free topology model fit of at least R2 > 0.8, a high mean connectivity, and a 

saturated curve for the relationship between the adjacency function parameter and R2. Genes were 

then assigned to modules based on the workflow described by Zhang and Horvath (2005) and an 

average gene profile was calculated for each module, referred to as the module eigengene. The 

module eigengene network for our eight-year-old dataset was visualised with Cytoscape v3.7.1 

(Shannon et al., 2003) to show the biggest cluster of correlated gene modules (absolute correlation > 

0.5; p-value < 0.00001). 

 

2.3.6 eQTL analysis 

eQTL mapping, classification, hotspot detection, and overlap analyses were performed on the three- 

and eight-year-old datasets with a robust pipeline for eQTL analysis developed by Christie et al. 

(2017). QTL Cartographer’s composite interval mapping (CIM) approach was used to map eQTLs 

with a forward regression step and a backward elimination step, with p-value < 0.1 for both (Basten 

et al., 2005). The average genome-wide likelihood ratio (LR) threshold of 11.5 was previously 

calculated through permutation analyses by Mizrachi et al. (2017), to correct for multiple traits and 

genome-wide markers (LR = LOD/0.217). User-specified parameters include a window size of 10 

and walking speed of 1 cM. The classification of an eQTL as either cis or trans was based on the 

position of the eQTL relative to the gene with which it is associated. A cis-eQTL is located at a 

 
 
 



44 
 

position less than half the average size of an eQTL away from its linked gene, on the same 

chromosome, whereas a trans-eQTL is further away and is usually located on a different 

chromosome. Genome-wide eQTL frequency was calculated in bins of size 1 cM and normalised for 

local gene density to identify global trans-eQTL hotspots (i.e. where more trans-eQTLs occur than 

is expected by chance). Hotspot names indicate the chromosome where the hotspot is located, as well 

as a Mb bin where many eQTL peaks are located for that hotspot (e.g. HS_1.39 is located on 

chromosome 1 with many peaks at the 39 Mb position). To compare the conservation of eQTLs for 

the same genes between the three- and eight-year-old datasets, a pairwise eQTL overlap score was 

calculated on the shared genetic map for genes with eQTLs in both datasets, as described by Mizrachi 

et al. (2017). An overlap score of 1.0 indicates a complete overlap between the eQTLs. A score 

between 0.5 and 1.0 indicates a partial overlap between the eQTLs, where they either start and end in 

the same 1 cM bin with the peaks being in different bins, or they start or end in different bins with 

high overlap between peaks in the same bin. Scores below 0.5 were not considered significant. 

 

2.3.7 Integrative systems genetics analysis 

eQTL hotspots and co-expression data were integrated in systems genetics models to illustrate how 

groups of co-expressed genes can be linked to shared regulatory loci. A Fisher’s exact test (Upton, 

1992) was used to determine the significance of association (shared membership) between gene 

modules and trans-eQTL hotspots, with a false discovery rate (FDR) adjusted p-value to correct for 

multiple comparisons. eQTL hotspots were also split based on the direction of the estimated additive 

effects of the eQTLs (i.e. whether higher transcript abundance is associated with the E. grandis or E. 

urophylla parental allele) and tested for significant overlaps with gene modules. Circos plots 

(Krzywinski et al., 2009) and Cytoscape networks were used to visualise and compare the genetic 

architecture (i.e. module membership and shared eQTLs) of genes involved in the general 

phenylpropanoid, cellulose, and xylan biosynthesis pathways between three- and eight-year-old 

samples (Christie et al., in preparation). 

 
 
 



45 
 

2.3.8 Gene ontology enrichment analysis 

Gene ontology (GO) enrichment analyses (Ashburner et al., 2000) were performed for all the genes 

in gene modules, trans-eQTL hotspots and split hotspots, as well as for all the significantly 

overlapping module-hotspot gene sets. This was done using the R package TopGO v2.34 (Alexa & 

Rahnenführer, 2018) and a gene-to-GO annotation file, previously created with annotations from 

Plaza (Proost et al., 2015), Phytozome (Goodstein et al., 2012) and a study by Kersting et al. (2015). 

User-specified parameters include the “elim” algorithm for calculating enrichment, the Fisher’s exact 

test statistic, FDR adjusted p-values to correct for multiple testing, a minimum node size of five, and 

listing the top 150 significant GO terms identified by the algorithm. 

 

2.4 Results 

2.4.1 Background 

We analysed transcriptome data from developing xylem tissues for 156 three-year-old and 100 eight-

year-old individuals of the E. grandis x E. urophylla backcross to E. urophylla population. The RNA-

seq data quality control and expression profiling is discussed in Supplementary Note 2.1. Genes 

were filtered for downstream analyses based on their expression in at least 25% of the population (i.e. 

TPM > 0 in 25% or more of the population), resulting in a final set of 24,861 expressed genes for the 

three-year-old population and 25,267 expressed genes for the eight-year-old population. Descriptive 

statistics for both populations used in downstream analyses are summarised in Table 2.1. 

 
Table 2.1: Descriptive statistics of three- and eight-year-old population datasets used in downstream analyses 

Population Number of 
individuals 

Genes Gene 
overlapa 

Unique 
genesb 

Min 
TPM 

Max 
TPM 

Mean 
TPM 

Median 
TPM 

SDc  

3-year-old 156 24,861 92.1% 1,976 0 22,024 40.21 6.19 188 

8-year-old 100 25,267 90.5% 2,382 0 22,674 39.57 4.55 219.6 
a Percentage of genes overlapping between the three- and eight-year-old population 
b Genes not expressed in the other population 
c Standard deviation of TPM values 
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2.4.2 Broad-sense heritability analysis in clones 

To analyse the broad-sense heritability (H2) of the transcriptome, also known as the individual 

heritability or repeatability when studying clonal populations, we identified 20 clonal pairs in the 

eight-year-old population and confirmed that the genotypes of each pair were identical, based on 

transcriptome-derived SNPs (Supplementary Figure 2.1). Trees were planted in a common garden, 

therefore limiting the amount of environmental variation that can influence variation in the 

transcriptome. If there was no effect from the environment, we would expect H2 = 1, as there was no 

genetic variation between clonal partners. Spearman rank correlations (Spearman, 1904) were 

calculated as a proxy for heritability across 25,307 genes, where the distribution of H2 values for 

transcript-level variation ranged from -0.60 to 0.99 and the H2 across the entire transcriptome per 

clonal pair ranged from 0.92 to 0.98, with a mean of 0.97 (Figure 2.1; Supplementary File 2.2). 

This explains the proportion of the transcriptome that is controlled by genetic variation and allows us 

to discriminate between genetic and environmental effects. The heritability of each gene was also 

calculated across the 20 pairs and the calculation was repeated ten times with 20 random non-clonal 

pairs to determine an estimate of the average full-sib family heritability (Supplementary Figure 2.2). 

We did not expect the repeatability of non-clonal pairs to be zero, as there was still a certain amount 

of relatedness within the family. The transcriptome-wide correlations per gene for non-clonal pairs 

were centered around zero (mean = -0.02), while the correlations per gene for 20 confirmed clonal 

pairs were centered around 0.5 (mean = 0.45). The difference in repeatability between clones and 

siblings was also calculated to assess the impact of non-additive variation on the population (∆H2 = 

mean H2clonal – mean H2non-clonal = 0.47).  
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Figure 2.1: Overall heritability of transcriptome variation based on 20 clonal pairs. Spearman rank correlations were 
used to calculate the overall broad-sense heritability (H2) of gene expression between two clonal replicates (first row of 
diagonal values), ranging from 0.92 to 0.98 with a mean of 0.97. Sample pairs are indicated by the “S” prefix and the 
biological replicate number is indicated by the “R” suffix. 

 

We also investigated the types of genes that tend to have very high or very low repeatability, by 

performing a GO enrichment analysis on genes in the top (10%) and bottom (10%) of the list of H2 

values (Supplementary File 2.2). We expected to see that key developmental genes will tend to have 

very high H2 values, whereas environmental response genes will have very low H2 values. We found 

that genes with high values (H2 > 0.765) were significantly enriched for defense response and signal 

transduction processes, whereas genes with low values (H2 < 0.119) were significantly enriched for 

respiratory burst involved in defense response and RNA methylation processes. These processes may 

not be an accurate representation of genes that are less repeatable, as lower expressed genes that were 

not expressed in all 40 clonal individuals tend to have lower repeatabilities that is likely due to the 

inconsistent expression profiles between pairs. To account for this, we repeated the analysis with only 

genes that have a mean TPM of at least 10 and found that they were enriched for other significant GO 

terms as well, such as ribosome biogenesis and ethylene biosynthesis. Finally, to assess the 

repeatability of genes involved in xylogenesis, we calculated the average heritability of lignin (H2 = 
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0.425), cellulose (H2 = 0.575) and xylan (H2 = 0.499) genes. The average heritability of all three sets 

of genes was calculated as 0.512, suggesting that variation in expression of these genes is associated 

with genetic and environmental effects. 

 

2.4.3 Genetic linkage map construction from transcriptome data 

To perform eQTL mapping on the three- and eight-year-old population using the same genetic map, 

we constructed a new genetic framework map by extracting SNPs in highly expressed genes from 

transcriptome data (Table 2.2; Figure 2.2). The map consisted of 236 markers distributed over 11 

linkage groups, spanning 1,008 cM with an average interval size of 4.5 cM. The genome coverage 

(p) of the map was estimated as 99.1% with the equation p = 1-e−2dn/L, where d is an average interval 

of 10 cM between markers, n is the number of markers, and L is the length of the linkage map in cM. 

The genetic position of each marker was compared to its physical position to ensure that all the 

markers were in the correct order within each linkage group (Supplementary Figure 2.3). A 

minimum marker site coverage of 10 was allowed and the average coverage across all markers was 

calculated as 346 reads per marker (Note: This is the down-sampled coverage reported by GATK that 

was used to calculate the genotype of each marker, not the actual read depth per marker which was 

much higher; Supplementary File 2.3). To test whether segregation deviated significantly from the 

expected 1:1 ratio, we performed a Chi-square test (χ2) at a 0.05 level of significance (Figure 2.3). 

Of the 236 markers, 35 (14.8%) deviated significantly from the expected ratio in the three-year-old 

population and 21 (8.9%) deviated significantly from the expected ratio in the eight-year-old 

population. Noticeably, markers with significant segregation distortion tend to cluster together (i.e. 

linkage to the same segregation distortion factor), resulting in regions of distortion that we expect to 

see in interspecific hybrids. As described by Myburg et al. (2003), markers were rephased to allow 

the direction of distortion to indicate the presence or absence of the E. grandis maternal allele of the 

F1 hybrid. 
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Table 2.2: Summary of the genetic linkage map 

Linkage group Markers Length (cM) Length (Mb) Average gap (cM) 
LG1 20 94.62 43.22 4.98 
LG2 24 96.47 57.73 4.19 
LG3 24 104.44 82.50 4.54 
LG4 15 60.86 40.03 4.35 
LG5 23 99.22 72.88 4.31 
LG6 27 123.02 56.59 4.73 
LG7 21 78.80 54.35 3.94 
LG8 24 101.8 64.55 4.43 
LG9 17 75.93 34.75 4.75 
LG10 21 86.75 37.41 4.34 
LG11 20 86.49 41.61 4.54 

Average 21 91.67 53.24 4.46 
Total 236 1,008.4 585.62 - 
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Figure 2.2: Genetic framework map for the E. grandis x E. urophylla F1 hybrid parent. The map consists of 236 
markers distributed over 11 linkage groups, spanning 1,008 cM with an average interval size of 4.5 cM. The map covers 
99.1% of the genome at an average marker interval of 10 cM. Each bar represents a linkage group (chromosome), with 
the gap sizes between markers in cM (left) and marker positions in bp (right) (Supplementary File 2.3).
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Figure 2.3: Segregation distortion observed in the genetic framework map for the three- and eight-year old population. Markers are indicated by bars and linkage groups 
(chromosomes) are indicated by dotted lines. The χ2 test statistic is indicated by the red line and the critical value of the χ2 test statistic at a 0.05 level of significance (3.841) is indicated 
by a horizontal black line. Significant distortion occurs where the χ2 test statistic exceeds the critical value. Markers were rephased to represent the E. grandis allele based on the 
negative direction of distortion (Supplementary File 2.3).
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2.4.4 Co-expression, co-regulation, and systems genetics analysis of gene 

expression during xylogenesis in mature trees 

A weighted gene co-expression network analysis (WGCNA) was performed to assign highly 

correlated genes to gene co-expression modules. Genes expressed in the eight-year-old population 

were assigned to 54 co-expression modules and the average expression pattern of each co-expression 

module was represented by a module eigengene (Langfelder & Horvath, 2007). The average 

expression patterns were used to calculate the correlation between modules and visualise the largest 

cluster (absolute correlation > 0.5; p-value < 0.00001) of the co-expression network as a module 

eigengene network (Figure 2.4). GO enrichment analysis was performed for each module to identify 

the biological processes represented in the network, with 65% of modules having significant 

enrichment for GO terms (Supplementary File 2.5). Several of the highly correlated modules were 

significantly enriched for processes involved in secondary cell wall formation, indicating that it was 

important for developmental genes to be co-expressed at this age. Some highly correlated modules 

were also significantly enriched for stress and defense responses, which showed that these trees were 

not only investing energy into regulating growth and development, but also regulating xylem gene 

expression in response to environmental stresses that can influence growth and mortality. 

 

A global eQTL analysis identified 29,860 eQTLs in the eight-year-old population, of which 6,743 

(23%) were classified as cis-eQTLs and 21,662 (73%) were classified as trans-eQTLs. We identified 

22 trans-eQTL hotspots (Table 2.3), of which 13 were significantly enriched for GO terms 

(Supplementary File 2.5). Within each hotspot region, we were able to identify possible candidate 

regulators by identifying transcription factors with cis-eQTLs (Supplementary File 2.6). If we 

consider highly correlated co-expression models to be a phenotype representing gene regulation that 

was achieved despite genetic and environmental variation, then we can ask whether genetic variation 

acts as a mechanism driving the co-expression and co-regulation of these models. By combining the 
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results from our co-expression and eQTL analyses into systems genetics models, we identified a 

possible genetic basis for coordinated expression responses regulating xylem biological processes. 

Figure 2.5 shows an example of such a model, where the association between three trans-eQTL 

hotspots and gene co-expression modules is illustrated in an integrated network. Two modules (brown 

and blue) are highlighted, as there was a significant number of genes overlapping between these 

modules and the hotspots. The groups of overlapping genes were significantly enriched for defense 

responses in the brown module and regulation of G2/M transition of the mitotic cell cycle in the blue 

module.  

 

 

Figure 2.4: Module eigengene network for the eight-year-old population. Biological processes involved in 

xylogenesis are highlighted. Only the biggest cluster of correlated gene modules is shown (absolute correlation > 0.5), 

where nodes represent gene modules, node size represents the number of genes in a module, edges represent correlations 

between modules, edge width represents the absolute correlation value, and edge colour represents the correlation sign. 

 

We further divided the eQTL hotspots into so called “split”-hotspots, based on the direction of their 

additive effects (i.e. whether higher transcript abundance was associated with the E. grandis or E. 

urophylla parental allele) (Supplementary Figure 2.4). We observed that some hotspots had strong 
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hotspot-module overlaps for genes in the same modules that were associated with eQTLs of opposite 

additive effects. To examine the associations between split-hotspots and modules involved in 

xylogenesis, we analysed the association between three secondary cell wall-related gene modules 

(black, purple and green) and hotspots with which at least two of the modules had a significant number 

of overlapping genes (Figure 2.6; Supplementary File 2.5). The green module had a group of highly 

correlated genes forming a tight cluster within the module network, for which the higher expression 

levels were associated with the E. urophylla parental allele in HS_10.37 and the E. grandis parental 

allele in HS_3.72. This cluster of genes was significantly enriched for vesicle-mediated transport and 

pollen germination and was highly correlated with a group of genes in the black module that were 

also associated with the E. urophylla parental allelic effect in HS_10.37. For HS_10.37 the two split-

hotspots were significantly enriched for different biological processes. 

 

Table 2.3: Summary of trans-eQTL hotspots in eight-year-old population 

Hotspot 
name Chr Average 

peak LODa 
Average 

R2 
Significant 
GO-termsb 

trans-
eQTLs in 
hotspot 

Genes in 
hotspot 
region 

cis-eQTLs 
in hotspot 

region 

TF genesc 
with cis-
eQTLs 

HS_1.39 1 3.19 0.10 4 344 57 13 1 

HS_1.44 1 3.22 0.10 1 362 122 34 2 

HS_2.44 2 4.11 0.16 0 196 19 1 0 

HS_2.54 2 3.32 0.11 0 194 55 14 0 

HS_2.59 2 3.31 0.11 16 1,494 367 108 7 

HS_3.5 3 3.60 0.11 0 297 72 16 0 

HS_3.11 3 3.62 0.12 3 296 79 35 3 

HS_3.37 3 3.47 0.12 1 457 176 60 2 

HS_3.58 3 3.69 0.12 6 385 225 81 6 

HS_3.72 3 3.61 0.12 4 1,656 225 78 4 

HS_6.51 6 3.52 0.12 0 191 89 19 1 

HS_7.35 7 3.51 0.11 0 229 117 31 4 

HS_7.45 7 3.80 0.13 2 277 51 8 2 

HS_7.53 7 3.24 0.11 35 610 200 51 1 

HS_9.25 9 3.27 0.11 0 500 189 49 1 

HS_9.28 9 3.42 0.12 0 227 85 21 0 

HS_9.37 9 3.41 0.12 8 915 346 91 8 

HS_10.37 10 3.41 0.11 1 672 123 36 1 

HS_11.36 11 3.51 0.11 5 933 247 72 2 

HS_11.43 11 3.45 0.12 3 422 187 50 1 

Total     10,657 3,031 868 46 
a LOD = LR x 0.217 

b Refer to Supplementary File 2.5 
c Transcription factors in trans-eQTL hotspot region 
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Figure 2.5: Integrated systems genetics model showing the association between eQTL hotspots and gene co-expression modules for xylem expressed genes in the eight-year-
old population. Three hotspots of interest are visualised to demonstrate how combining results from eQTL and co-expression analyses into a systems genetics model allows the 
identification of a genetic basis for coordinated expression responses regulating xylem biological processes. A) Circos plot showing the gene-eQTL associations for each hotspot. B) 
Integrated network showing how genes in hotspots overlap with genes in the same module (module membership = colour). The brown and blue modules are highlighted, for which the 
hotspot overlapping genes were significantly enriched for defense responses and regulation of G2/M transition of the mitotic cell cycle respectively. Refer to Supplementary File 2.5 
for all hotspot-module overlaps and GO enrichment results. 
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Figure 2.6: Association of secondary cell wall-related modules with split-hotspots. The network shows the association of three secondary cell wall-related gene modules (black, 
green, and purple circles) with three significantly overlapping split-hotspots (hotspots 2, 5, and 1 on chromosomes 2, 3, and 10 respectively). Grey lines indicate absolute correlations 
> 0.8 between genes and genes within each module were clustered based on their correlation values. Module-hotspot overlap significance was determined with a Fisher’s exact test 
and significant GO enrichment terms for these overlapping genes are listed, with the text colour corresponding to the colour of the module or split-hotspot. Hotspot 2.54 did not have 
any significant enrichment, but may still contain important regulatory genes. For split-hotspots, higher transcript abundance associated with the E. urophylla allele is represented by 
blue lines and for the E. grandis allele by red lines. Refer to Supplementary File 2.5 for all hotspot-module overlaps and GO enrichment.
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2.4.5 Age-to-age comparison of the genetic architecture of xylem gene expression 

To determine the age-to-age conservation of absolute gene expression levels, a Pearson correlation 

of genes expressed in both the three- and eight-year-old populations was calculated as 0.78. Since we 

were looking specifically at xylogenesis, we wanted to know whether wood formation genes were 

highly correlated in their expression between the three- and eight-year-old population. To determine 

the age-to-age correlation of absolute xylem gene expression values, six groups of genes (Myburg et 

al., 2014; Ployet et al., 2019; Christie et al., in preparation) were chosen from both populations: (i) 

secondary cell wall genes (142); (ii) cellulose synthase (CesA) genes (21); (iii) bona fide lignin genes 

(18); (iv) cellulose/xylan pathway genes (113); (v) shikimate/lignin/flavonoid pathway genes (71); 

and (vi) the top 100 highest expressed genes in each population (130). For each gene, the mean 

transcript abundance was compared between the two ages and a Pearson correlation was calculated 

per group (Figure 2.7). The expression of genes involved in xylogenesis (group i-v) remained 

relatively conserved across age (r ≥ 0.9), whereas the top expressed genes varied more (r = 0.52). To 

determine whether the relative expression of these genes was conserved across age (e.g. two genes 

that were most correlated at three years were still most correlated at eight years). Spearman rank 

correlations of transcript abundance were compared between the three- and eight-year-old population 

(Supplementary Figure 2.5). The correlations for gene groups ranged from 0.59 to 0.85, with a 

median of 0.64 and a mean of 0.68, suggesting that these relationships were not highly conserved and 

that gene co-expression patterns may vary across age. 

 

We also wanted to know whether genes, for which the relative expressions remained conserved across 

age, fell within the same co-expression modules. To do this, we performed a WGCNA on both 

populations to analyse the age-to-age changes in gene co-expression patterns. For the three-year-old 

population, 24,861 genes were assigned to 101 co-expression modules (min: 10 genes; max: 7,091 

genes), whereas for the eight-year-old population, 25,267 genes were assigned to 54 co-expression 

modules (min: 16 genes; max: 6,946 genes) using the same parameters (Supplementary Figure 2.6). 
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Both networks had good scale-free topology fit where a soft thresholding power of four was selected 

(three-year-old population: R2 > 0.85; eight-year-old population: R2 > 0.90). For each gene, we 

identified its nearest neighbour (i.e. the same two genes were nearest neighbours at both ages). The 

proportion of gene pairs that were conserved across age was 8% for genes expressed in both 

populations (Supplementary File 2.6). For these gene pairs that remained, the age-to-age changes in 

correlation ranged from 0.0002 to 0.519. We also determined the proportion of gene pairs occurring 

together within the same co-expression module. In the three-year-old population, 65% of gene pairs 

fell within the same co-expression module and in the eight-year-old population, 71% fell within the 

same co-expression module. 
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Figure 2.7: Age-to-age correlation of mean expression values for six different gene groups. A) Genes involved in 
secondary cell wall processes, B) CesA genes, C) bona fide lignin genes, D) genes involved in cellulose/xylan pathways, 
E) genes involved in shikimate/lignin/flavonoid pathways, and F) the top 100 expressed genes in each population. 
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Next, we considered the role of genetic variation (i.e. eQTLs) on the conservation of gene expression 

patterns and correlations (i.e. co-expression networks). A global eQTL analysis was performed on 

the three- and eight-year-old populations to determine which genes have variation in their expression 

patterns that can be associated with variation in the genotype (Table 2.4; Supplementary Table 2.1). 

For genes with high enough levels of expression (i.e. TPM > 0 in 25% or more of the population), 

70.6% and 72.5% had eQTLs in the three- and eight-year-old population, respectively. The three-

year-old population have a higher proportion of cis-eQTLs and lower proportion of trans-eQTLs 

relative to the eight-year-old population. An average of 1.5 trans-eQTLs per gene was observed in 

both populations, with some genes having up to five or six trans-eQTLs. Genes in the eight-year-old 

population had more trans-eQTLs per gene than those in the three-year-old population 

(Supplementary Figure 2.7). Overall, cis-eQTLs explained about 18% of the variation observed in 

the transcriptome, whereas trans-eQTLs explained only about 9% for genes that had these eQTLs.  

 

Table 2.4: Summary of eQTLs in the three-and eight-year-old population 

Population Three-year-old  Eight-year-old 
Total number of eQTLs 27,284 29,860 

Average peak LR 30.3 20.8 

Average R2 0.14 0.15 

Number of cis-eQTLs 8,960 (33%) 6,743 (23%) 

Average peak LR (cis-eQTLs) 53.2 35 

Average R2 (cis-eQTLs) 0.23 0.23 

Number of trans-eQTLs 17,063 (63%) 21,662 (73%) 

Average peak LR (trans-eQTLs) 17.4 16 

Average R2 (trans-eQTLs) 0.08 0.12 

 

The genome-wide location of genes and eQTLs were compared between the two age groups to 

provide an overview of the genetic architecture of xylem transcript abundance and how it changed 

over time (Figure 2.8). Expressed gene and cis-eQTL densities remained fairly conserved across the 

two ages, but there were many instances where the trans-eQTL densities varied significantly, 

resulting in different trans-eQTL hotspots between the two ages (Supplementary Figure 2.8; 

Supplementary Figure 2.9). To determine whether the conserved regions represented the same 
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eQTLs, an eQTL overlap score was calculated for each gene that had an eQTL at both ages on the 

same chromosome, based on the distance between their peaks (Supplementary File 2.4). As 

expected, cis-eQTLs tended to be more conserved with higher overlap scores than trans-eQTLs 

(Supplementary Figure 2.10; Supplementary Figure 2.11). 

 

 
Figure 2.8: Frequency plots showing the density of xylem expressed genes and eQTLs at different ages. A genome-
wide overview of gene density (green), cis-eQTL density (blue) and trans-eQTL density (red) per chromosome is 
visualised to give us an idea of the changes in the genetic architecture across age. Each chromosome was divided into 
sliding window bins based on the genetic map. 
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To study the genetic architecture of genes directly involved in xylogenesis, we analysed the gene 

module membership and shared eQTLs of genes (with average TPM > 10) involved in the general 

phenylpropanoid (18), cellulose (26), and xylan (58) biosynthesis pathways between the three- and 

eight-year-old populations. Module colours were assigned arbitrarily and did not correspond between 

the two populations (figures only show whether the same genes were correlated at both ages). Figure 

2.9 shows that most lignin genes were co-expressed in the three-year-old population (black module), 

whereas in the eight-year-old population these genes were divided into two co-expression modules 

(tan and purple) that were not highly correlated with each other based on their module eigengenes (r 

= -0.22). Some genes shared eQTLs with each other at both ages, however, from our overlap analysis 

we determined that it was not the same eQTL that had been conserved across age. The same dramatic 

shift in the genetic architecture was seen for cellulose genes (Supplementary Figure 2.12) and xylan 

genes (Supplementary Figure 2.13), however, some shared eQTLs between xylan genes did remain 

conserved across age. 

 

 

Figure 2.9: Genetic architecture of lignin genes across age. Gene module memberships (larger circles) and shared 
eQTLs (triangles) are shown for lignin genes (smaller circles) between three-year-old individuals (green edges) and eight-
year-old individuals (blue edges). Genes are labelled and coloured according to their enzyme names in the general 
phenylpropanoid pathway. Coloured triangles indicate that the shared eQTLs fall within trans-eQTL hotspots for some 
of the genes. 

 

It is important to consider that, apart from age, other factors may be involved in the differences seen 

in the genetic architectures of our two populations. The eight-year-old population was sampled after 

a drought period of around 24 months (years six and seven), which led us to believe that stress 

response may have had a significant effect on the regulation of developmental genes in this 
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population. Ployet et al., (2019) identified a set of genes that are potentially involved in secondary 

cell wall remodelling in response to abiotic stress. We compared the genetic architecture of 15 of 

these known transcription factor genes between the three- and eight-year-old population to show how 

their regulation changed across age under stressful conditions (Figure 2.10). We also tested whether 

these genes were significantly differentially expressed between the two populations and found that 

14 of the 15 genes were up-regulated in the eight-year-old population, with a median log2 fold change 

of 1.9. 

 

 

Figure 2.10: Genetic architecture of transcription factor genes associated with response to abiotic stress. Gene 
module membership (larger circles) and eQTL hotspot membership (triangles) is shown for transcription factor genes 
associated with response to abiotic stress (smaller circles) between three-year-old individuals (green edges) and eight-
year-old individuals (blue edges). 

 

To dissect how genetic variation affects co-expression of genes and therefore contributes to the 

observed shift in the genetic architecture, we first had to determine what biological functions were 

gained or lost between juvenile and mature trees in terms of only gene co-expression (i.e. independent 

of eQTLs). We performed a GO enrichment analysis on genes that were unique to each population 

and genes that were significantly differentially expressed with a log2 fold-change > 2 

(Supplementary File 2.5): (i) genes unique to the three-year-old population were enriched for 

defense response, protein phosphorylation and signal transduction; (ii) genes unique to the eight-year-

old population were enriched for response to ethylene, protein phosphorylation and salicylic acid 

biosynthesis; (iii) genes up-regulated in the eight-year-old population were enriched for response to 

chitin, ethylene biosynthesis and protein folding; and (iv) genes down-regulated in the eight-year-old 
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population were enriched for defense response, photosynthesis and cell proliferation. We performed 

a Fisher’s exact test on gene co-expression modules and module GO terms between the three- and 

eight-year-old population to identify which modules and processes were either conserved across age 

or were unique to each developmental stage (Supplementary File 2.5). We found that GO terms for 

the eight-year-old magenta module (553 genes), which was enriched for stress responses, 

significantly overlaps with GO terms for the yellowgreen (76 genes) and darkgreen (113 genes) three-

year-old modules. Similarly, GO terms for the eight-year-old brown module (3,087 genes), which 

was enriched for defense responses, significantly overlapped with GO terms for the tan (295 genes), 

darkorange (105 genes) and plum (37 genes) modules in the three-year-old population. Two of the 

new hotspots that were present in the eight-year-old population, HS_9.37 and HS_11.36, were 

significantly enriched for defense and stress responses respectively (Supplementary File 2.5). 

Interestingly, these hotspots had a significant number of genes that respectively overlap with the 

brown and magenta modules enriched for the same biological functions. Out of the 117 genes that 

respond to abiotic stress (Ployet et al., 2019), 14 had trans-eQTLs that fall within HS_11.36 

(Supplementary File 2.6). 

 

2.5 Discussion 

The aim of this study was to characterise the genetic architecture of xylem gene expression during 

wood formation at rotation age in a full-sib family of E. grandis x E. urophylla F2 hybrid backcross 

trees and to perform a comparative analysis of the genetic architecture between juvenile and mature 

trees. For the first time in one of our studies, we had access to a clonal mapping population that 

allowed us to measure the heritability of transcriptome profiles. High broad-sense heritability 

estimates suggest that genetic variation contributes substantially to the phenotypic variation observed 

in transcript levels. This was also the first time where we made use of population-wide transcriptome-

derived SNPs to construct a robust genetic linkage map that could be used for eQTL mapping in 

juvenile and mature trees. This allowed for a more accurate and direct comparison of the genetic 
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architecture of gene expression between the two ages, based on xylem genes expressed at both ages. 

We showed that by combining the results from co-expression and eQTL analyses into systems 

genetics models, it is possible to identify a potential genetic basis for coordinated expression 

responses regulating xylem biological processes at population level. Finally, we were able to perform 

an age-to-age comparison of the absolute and relative transcript abundances of xylem expressed genes 

and investigate the conservation of their genetic architecture across age. We discovered that there was 

a major shift in the genetic architecture for genes involved in xylogenesis, which may be a result of 

transcriptional rewiring due to developmental stage or age, stress responses, other unknown 

biological factors, or likely a combination of the above.  

 

Before any major analyses could be performed, we identified and removed problematic samples 

(transcriptomes) that could influence the accuracy of downstream results (Supplementary Note 2.1). 

This resulted in a smaller sample set that was available for the eight-year-old population (100 

samples) compared to the three-year-old population (156 samples), which decreased the statistical 

power of our analyses. Due to this, it is also possible that the WGCNA method could not separate 

some highly correlated modules well enough in the eight-year-old population, as a higher number of 

samples allows for better cluster separation. We have recently expanded the transcriptome sequencing 

to have equivalent amounts of data, but there was not enough time to include these results in this 

manuscript. It will, however, be included in the scientific paper that we plan to publish. For this study, 

we only mapped eQTLs for one of the two parents (the F1 hybrid), as we were mostly interested in 

the interspecific differentiation between the E. grandis or E. urophylla haplotypes in the F1 hybrid 

that are segregating in the progeny. This means that only half of the potential genetic variation was 

explored in this study and that these analyses must be expanded to include the E. urophylla parent as 

well, in order to reflect the full genetic architecture. The major changes we observe in the genetic 

architecture between the two populations may be due to at least four contributing factors that we 

cannot rule out: (i) development or age-related changes; (ii) stress related changes; (iii) unknown 
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biological reasons; and (iv) limited statistical power. For the first three, the loss or gain of an eQTL 

could be explained by different polymorphic transcription factors or repressors affecting gene 

expression, whereas for the fourth, the eQTL signal might be just above or below the detection 

threshold in three-year-old vs. eight-year-old trees. We can possibly start to address this by asking 

what was conserved across age in terms of gene co-expression and co-regulation (eQTLs). If the 

genetic variation remains the same (typically cis-eQTLs), the polymorphism still has the same knock-

on effect on the expression of target genes, and we can assume that these genes are probably not 

developmental stage dependent, although their absolute expression levels can be higher or lower in 

juvenile vs. mature trees. 

 

Heritability of xylem transcriptome profiles in Eucalyptus 

One of the most persistent questions that geneticists have struggled with is understanding how 

phenotypic variation is affected by variation in the genotype (Boyle et al., 2018). To estimate the 

proportion of xylem transcript level variation that was affected by genetic variation, we calculated 

the broad-sense heritability, also estimated by the transcriptome repeatability, across 25,307 xylem 

expressed genes for 20 pairs of clonal replicates planted in a common garden. The distribution of H2 

values for transcript-level variation ranged from -0.60 to 0.99 (Supplementary Figure 2.2), 

suggesting that some genes are highly affected by environmental factors, whereas others are highly 

heritable and therefore mainly affected by genotype. According to Steinsaltz et al. (2017), negative 

heritability should not be ignored, as it could suggest that individuals with similar genotypes are likely 

to have more trait variation than those with very different genotypes. Estimating the heritability 

allows us to discriminate between genetic and environmental effects on transcript abundance, which 

is in line with the results from previous studies that could detect genetic control of gene expression 

levels through genetical genomics approaches in Eucalyptus (Kirst et al., 2004; Kirst et al., 2005; 

Kirst and Yu, 2007) and Populus (Drost et al., 2010; Mähler et al., 2017). The average heritability 

estimates for lignin (H2 = 0.425), cellulose (H2 = 0.575), and xylan (H2 = 0.499) genes are in line with 
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results from a recent study by Vaillant et al. (2018), where the authors used a variance component 

ratio (VCR) based on the concept of broad-sense heritability to evaluate the genetic effect in leaf and 

xylem transcriptome variation among E. urophylla x E. grandis hybrids. The authors found that the 

mean VCR for phenylpropanoid (lignin) genes was higher in leaf tissue (VCR = 0.37) than in xylem 

tissue (VCR = 0.28), whereas the mean VCR for cellulose and xylan genes were higher in xylem 

tissue (VCR = 0.40) than in leaf tissue (VCR = 0.29). The authors conclude that the results suggest 

that the genetic control of gene expression within these pathways is not associated with the genes that 

constitute the pathways, but that the control is related to regulatory genes. It is important to show 

significant heritability for transcript abundance, as the statistical power that is needed to detect genetic 

variants affecting gene expression (eQTLs) is dependent on heritability (Visscher et al., 2008).  

 

Simultaneous genetic mapping and transcriptome profiling 

We wanted to use a single genetic map for mapping eQTLs in the two populations (three- and eight-

year-old backcross progeny from the same cross) in order to avoid as much technical variation as 

possible, which would allow for a more accurate and direct comparison of the genetic architecture of 

xylem expressed genes. For the three-year-old samples, we previously only had access to DArT 

markers (Kullan et al., 2012), and for the eight-year-old population, we had SNP chip genotypes 

generated from genomic DNA for one clonal ramet of each genotype using the EuCHIP60K SNP 

chip (Silva‐Junior et al., 2015). However, in some cases the SNP data was from a different ramet to 

what was used for RNA collection, which created the possibility of mismatches between genotypes 

and transcriptomes. As we had RNA-seq data available for both populations, we could simply extract 

robust SNP genotypes from transcriptome data of highly expressed genes to construct a new genetic 

linkage map (Figure 2.2). This allowed us to have a 1:1 correspondence between the genetic map 

and the transcriptome. Requirements such as a minimum coverage of 10 (per individual) and a 

minimum call rate of 0.9 per marker ensured that the map was based on high confidence SNP calls 

within highly expressed genes (Engelbrecht et al., unpublished; Supplementary File 2.3). Recent 
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studies that have applied this method of constructing a genetic linkage map from transcriptome-

derived SNPs were done by Shearman et al. (2015) in rubber trees, Galpaz et al. (2018) in melons, 

Santos et al. (2018) in peas, and Singh et al. (2018) in potato beans. This transcriptome-derived 

genetic map, together with existing bioinformatics pipelines for eQTL data analysis (Christie et al., 

2017) and co-regulation analysis (Christie et al., in preparation), allowed us to propose a method for 

rapid genetic dissection of gene expression variation from population-wide transcriptome data alone. 

 

Systems genetics modelling of xylem development at rotation age 

To characterise the genetic architecture of xylem gene expression at rotation age, we studied the 

relationship between genetic variation (e.g. trans-eQTL hotspots) and the co-expression of genes in 

modules. We know that, in the absence of genetic variation (e.g. in clonal or inbred populations), the 

transcriptional network will regulate expression modules in response to development and 

environmental factors. When a layer of genetic variation is added, genes are perturbed (“pulled out”) 

from their normal expression patterns, affecting biological processes and networks that may be 

subject to natural selection. One such example is demonstrated in a study by Mähler et al. (2017) on 

Populus leaf buds, where the authors found that the key mechanism shaping the genetic architecture 

of gene expression variation is purifying selection and that the strength of this selection influences 

co-expression network connectivity. However, because our population consisted of a novel genetic 

construct (F1 hybrid of non-overlapping species) that does not exist in nature, we are studying much 

more genetic variation than would normally be present in natural populations. Combinations of genes 

or expression patterns that are deleterious in this cross would have died early due to natural selection, 

as is expected for interspecific backcross families. Thus, the co-expression modules that we observed 

were those that could exist (i.e. permissible) despite the large amount of genetic variation in the 

population (Figure 2.4). Combining results from our eQTL and co-expression analyses into systems 

genetics models therefore allows us to identify a genetic basis for coordinated expression responses 

regulating xylem biological processes.  
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Age-to-age comparison of transcript abundance and genetic architecture 

To determine if wood formation genes were highly correlated in their expression between the three- 

and eight-year-old population, we analysed the age-to-age correlation of absolute (Figure 2.7) and 

relative (Supplementary Figure 2.5) xylem transcript abundance. Absolute values remained 

relatively conserved across age (r ≥ 0.9), whereas relative values were less conserved (0.59 ≤ r ≤ 

0.85), suggesting that, even though these genes were still expressed at the same levels in juvenile and 

mature trees, there are differences in the way in which their co-expression was regulated across 

individuals of the population. To further analyse the degree of conservation of the genetic architecture 

of genes directly involved in xylogenesis, we compared the gene module membership, shared trans-

eQTLs and trans-eQTL hotspot membership of genes involved in the lignin (Figure 2.9), cellulose 

(Supplementary Figure 2.12) and xylan (Supplementary Figure 2.13) pathways between juvenile 

and mature trees. We found that the transcriptional regulation architecture, dominated by major 

regulatory perturbations, exhibited a large shift across age manifested by new trans-eQTL hotspots 

detected in the eight-year-old population (Figure 2.8; Supplementary Figure 2.9). So how was 

xylem development maintained with such a big shift in the genetic architecture in terms of trans-

eQTL hotspots, which are considered major drivers of gene expression? Are there factors other than 

age/developmental stage that could explain the drastic shift in genetic architecture? 

 

It is important to consider that, apart from age, other factors may be involved in the differences seen 

in the xylem genetic architectures of the two populations. The eight-year-old siblings were sampled 

after a severe drought period of around 24 months (years six and seven), which had led us to believe 

that stress responses may have had a significant effect on the regulation of developmental genes in 

this population. We expected to see some developmental changes, but due to the exceptional stress 

effect that affected the mature trees, we hypothesise that the shift was potentially due to stress-related 

transcription factors that were causing, or were regulated by, new trans-eQTL hotspots and thereby 

played a major role in xylogenesis in mature (stressed) trees (Figure 2.10). If such transcription 
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factors were segregating in juvenile trees, the polymorphisms may not have affected xylem gene 

expression much, because the trees were not stressed. However, in mature trees the polymorphisms 

(E. grandis or E. urophylla alleles), may have had a knock-on effect via the transcription factor on 

other stress-related genes. The dramatic shift in genetic architecture was possibly due to a 

combination of developmental and stress responses, as observed in a study by Taylor-Teeples et al. 

(2015), who showed that secondary cell wall gene regulation is tightly interwoven with responses to 

abiotic stress and that different stresses are capable of promoting functional adaptation by perturbing 

cell wall genes. Similarly, Ployet et al. (2019) implemented a network-based approach which showed 

that co-regulated genes and metabolite modules involved in wood formation play a fundamental role 

in the trade-off between production of biomass and response to stress.  

 

To dissect how genetic variation affects co-expression of genes and therefore contributes to the 

observed shift in the genetic architecture, we first had to determine what biology was gained or lost 

between juvenile and mature trees in terms of gene co-expression (i.e. independent of eQTLs). We 

found that two relatively large modules in the eight-year-old trees (brown and magenta), which were 

enriched for stress and defense responses, significantly overlap in terms of biology with several 

smaller modules in the three-year-old population (Supplementary File 2.5). It is possible that these 

genes that were in different modules in juvenile trees, but were then co-expressed in mature trees, 

could have been subject to a new trans-eQTL that was coordinating their expression. If the gene that 

was subject to a new trans-eQTL was a regulator, the polymorphism will have had a knock-on effect 

on all the target genes, which could have created an eQTL hotspot. Interestingly, two of the new 

hotspots that arose in the eight-year-old population (HS_9.37 and HS_11.36) were biologically 

enriched for defense and stress responses, respectively, and a significant number of genes present in 

these hotspots overlapped with the two modules enriched for the same biological functions 

(Supplementary File 2.5). We were particularly interested in the dehydration responsive element 

binding protein gene (DREB2), which is an ethylene response factor (ERF) transcription factor that 
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plays an important role in response to drought-related stress. In the eight-year-old population, this 

gene was co-expressed in the brown module, which was enriched for response to chitin, and was 

associated with HS_3.97, which was enriched for ethylene biosynthesis. Interestingly, the subset of 

genes that overlap between this module and hotspot were significantly enriched for processes 

involved in stress and defense response and were specifically associated with eQTLs for which the 

higher gene expression was associated with the E. grandis allele. This shows that the difference 

between the E. grandis and E. urophylla allele suddenly became important in mature trees, as it had 

a bigger outsize effect on the outcome of gene expression. 

 

2.6 Conclusion and Future Prospects 

This study provides a genome-wide overview of regulatory loci and polymorphisms associated with 

variation in transcript abundance for xylem expressed genes in mature, field-grown trees and 

characterises the molecular genetic architecture of wood formation in Eucalyptus hybrids. We 

observe a dramatic shift in the genetic architecture of genes involved in xylogenesis, which could be 

a result of developmental and stress responses working in combination to keep the trees alive during 

the severe drought period. Combining the results from our eQTL analyses with important wood 

property trait QTLs will allow us to identify positional candidate genes that act as regulators of gene 

expression. This will enable us to analyse the genetic architecture underlying complex wood 

biorefinery traits and to identify genes and pathways that interact to determine complex trait 

outcomes, which can be used to engineer or breed for these traits while avoiding negative effects on 

plant growth. It is important to develop effective strategies to validate these genes and their roles in 

complex biological processes involving many genes. It is also important for more research to be done 

on how plants can be engineered to adapt to environmental changes caused by climate change and 

global warming, as abiotic stress has substantial effects on cell wall metabolism and wood formation 

(Le Gall et al., 2015; Ployet et al., 2017). 
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Blein-Nicolas et al. (2019) used a systems genetics approach that included genomics, proteomics and 

phenotypic data on maize hybrids subjected to water deprivation. The authors showed that drought 

response has a strong effect on many proteins by inducing proteome remodelling and reprogramming 

the genetic control of protein abundance that could influence the phenotype. This can be an important 

avenue to explore in trees, as it could help to further elucidate the molecular mechanisms underlying 

drought response and tolerance. Although there has been considerable progress in understanding the 

effects of abiotic stress on cell wall metabolism, the complex mechanisms underlying the response 

can be better understood by combining intermediate phenotypes across different biological scales 

through systems biology approaches. One of the major objectives of systems biology is to produce 

models that are able to predict how a system will react to genetic variation (or artificial selection) and 

how this will affect growth and development (Drost et al., 2010). As more data becomes available 

and systems genetics analyses become more comprehensive, future studies will have to adopt 

multidisciplinary approaches, such as the incorporation of machine learning algorithms for 

computational modelling, to extract meaning from the data and to produce testable models that are 

predictive to some extent (Harfouche et al., 2019). 
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2.9 Supplementary Information 

2.9.1 Supplementary Figures and Tables 

 

 
Supplementary Figure 2.1: Pairwise identity-by-decent (IBD) analysis of 234 transcriptome-derived SNP 
genotypes for 20 pairs of clonal replicates. Black squares indicate a full or approximately 1:1 match between the RNA-
seq genotypes and yellow squares indicate an approximate 50% match, as expected from full-siblings. Sample pairs are 
indicated by the “S” prefix and the biological replicate number is indicated by the “R” suffix. 
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Supplementary Figure 2.2: Distribution of correlation values for 25,307 genes in eight-year-old developing xylem 
tissue. The density plots show the distribution of Spearman rank correlations of transcript abundance for 20 random non-
clonal pairs (repeated ten times) and 20 clonal pairs. The transcriptome-wide correlations for non-clonal pairs were 
centered around zero (x̄ = -0.02), while the correlations for 20 confirmed clonal pairs were centered around 0.5 (x̄ = 0.45). 
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Supplementary Figure 2.3: Genetic framework map vs. physical map for the E. grandis x E. urophylla F1 hybrid parent. For each pair, the bar on the left represents a linkage 
group (LG) on the genetic map, with the genetic position in cM (left) and marker positions in bp (right). For each pair, the bar on the right represents a chromosome (Chr) on the 
physical map (E. grandis v2.0 assembly), with physical position in Mbp (left) and marker positions in bp (right).
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Supplementary Figure 2.4: Association of split-hotspots with gene modules. Networks show the association of gene 
modules (circles) with split-hotspots for two trans-eQTL hotspots (triangles), (A) HS_6.51 and (B) HS_11.43, to 
determine if opposite allelic effects are enriched for different biological processes. Module-hotspot overlap significance 
was determined with a Fisher’s exact test and significant GO enrichment terms for these overlapping genes are listed. 
Grey lines represent correlation between genes. For split-hotspots, higher transcript abundance associated with the E. 
urophylla allele is represented by blue lines and for E. grandis with red lines. Genes in HS_6.51 strongly overlap with 
the black and blue modules and are associated with a maternal allelic effect. Genes in HS_11.43 strongly overlap with 
these same modules and are associated with a paternal allelic effect. These genes are enriched for different biological 
processes than those in HS_6.51. 
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Supplementary Figure 2.5: Age-to-age correlation of gene pairs for six different gene groups. The correlation of 
each gene with all other genes in the same group was compared between different ages. A) Genes involved in secondary 
cell wall processes, B) CesA genes, C) bona fide lignin genes, D) genes involved in cellulose/xylan pathways, E) genes 
involved in shikimate/lignin/flavonoid pathways, and F) the top 100 expressed genes in each population. 
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Supplementary Figure 2.6: Gene dendrograms and module colours. Genes are represented by vertical lines (leaves) 
and branches group together genes that are highly co-expressed and interconnected. Modules are identified by individual 
branches using the Dynamic Tree Cut approach. (A) Genes are divided into 101 modules for the three-year-old population. 
(B) Genes are divided into 54 modules for the eight-year-old population. Refer to Supplementary File 2.6 for gene 
module memberships.
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Supplementary Figure 2.7: Number of trans-eQTLs per gene in three- and eight-year-old xylem expressed genes. 
The number of trans-eQTLs per gene is compared between the three-year-old (green) and eight-year-old (blue) 
population. 
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Supplementary Figure 2.8: Genome-wide trans-eQTL hotspots per population. The frequency of trans-eQTLs per 
cM is indicated by vertical bars. Red bars indicate possible trans-eQTL hotspots, where the frequency of eQTLs at that 
position is higher than expected to occur by chance (above a genome-wide permutation threshold, indicated by a 
horizontal black line). 

 

 

 

 

 

 

 

 
 
 



86 
 

 

 

 

Supplementary Figure 2.9: Trans-eQTL hotspot density at two different ages. The Circos plot shows the density of 
trans-eQTL hotspots for 11 linkage groups (black) for the three-year-old (green) and eight-year-old (blue) population.
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Supplementary Figure 2.10: Distribution of eQTL overlap scores between the three- and eight-year-old population 
per class. The density plots show the distribution of overlap scores that were calculated per gene between the three- and 
eight-year-old population for cis-eQTLs (green) and trans-eQTLs (blue). Overall, cis-eQTLs are more conserved across 
age than trans-eQTLs. The bimodal distribution can be explained by the relationship between the change in the eQTL 
peak position and the overlap score, as illustrated in the following figure. 
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Supplementary Figure 2.11: Relationship between overlap scores and the changes in peak positions between three- 
and eight-year-old individuals. For every conserved eQTL, an overlap score was calculated and compared to the change 
(Δ) in the peak position of the eQTL across age, for (A) cis-eQTLs (2,589) and (B) trans-eQTLs (506).
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Supplementary Figure 2.12: Genetic architecture of cellulose genes across age. (A) Shared eQTLs (triangles) and (B) gene module membership (larger circles) are shown for 
cellulose genes (smaller circles) between three-year-old individuals (green edges) and eight-year-old individuals (blue edges). Genes are labelled according to their enzyme names in 
the cellulose pathway. Coloured triangles indicate that the shared eQTLs fall within trans-eQTL hotspots for some of the genes. CESA 4, 7 and 8 are secondary cell wall related 
proteins (Taylor-Teeples et al., 2015).
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Supplementary Figure 2.13: Genetic architecture of xylan genes across age. (A) Shared eQTLs (triangles) and (B) gene module membership (larger circles) are shown for xylan 
genes (smaller circles) between three-year-old individuals (green edges) and eight-year-old individuals (blue edges). Genes are labelled according to their enzyme names in the xylan 
pathway. Coloured triangles indicate that the shared eQTLs fall within trans-eQTL hotspots for some of the genes. The two black triangles represent the same eQTL on chromosome 
10 in both populations and the two grey triangles represent the same eQTL on chromosome 6 in both populations.
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Supplementary Table 2.1: Summary of genes with eQTLs in the three-and eight-year-old population 

Population Three-
year-old  Eight-

year-old  

Number of genes with eQTLs 17,559 (70.6%) 18,308 (72.5%) 

Number of genes with cis or trans eQTLs 16,735 (67.3%) 17,411 (68.9%) 

• Number of genes with only cis-eQTL 8,911 (53.2%) 6,695 (38.5%) 

• Number of genes with only trans-eQTL 12,033 (71.9%) 14,245 (81.8%) 

• Number of genes with cis- and trans-eQTLs 4,209 (25.2%) 3,529 (20.3%) 

Average number of eQTLs per gene 1.6  1.6  

Average number of cis-eQTLs per gene with cis-eQTLs 1  1  

Average number of trans-eQTLs per gene with trans-eQTLs 1.4  1.5  
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2.9.2 Supplementary Notes 

Supplementary Note 2.1: RNA-seq data quality control and expression profiling 

We analysed transcriptome data from developing xylem tissues for 156 three-year-old and 144 eight-

year-old individuals of the E. urophylla backcross population. All samples passed a quality test with 

very good Phred scores (Supplementary Note Figure 2.1), eliminating the need for read trimming. 

An average of 86.1% and 90.5% of reads mapped uniquely to the E. grandis reference genome for 

the three- and eight-year-old samples respectively (Supplementary Note Table 2.1). To gain insight 

into the technical repeatability of our sample set, four random samples from the eight-year-old 

population were sequenced in duplicate. A Pearson correlation value close to 1.0 was observed for 

the two replicates of all four individuals (Supplementary Note Figure 2.2), showing that the 

transcriptome data was quantified in a repeatable fashion, which allows us to analyse biological 

variation without the need to adjust for variation caused by technical factors.  

 

As the transcriptome data of the eight-year-old population had not been analysed before, an identity-

by-descent (IBD) analysis was performed to confirm whether all the samples belonged to the same 

backcross family and to eliminate any possible clonal replicates. This was done by comparing 

previously generated SNP chip (EuCHIP60K) (Silva‐Junior et al., 2015) genotype data with the 

transcript-derived SNPs (Supplementary Note Figure 2.3), as well as performing an all-to-all 

comparison among samples based on the transcript-derived SNPs (Supplementary Note Figure 2.4). 

Nine samples were removed from the dataset, of which six were clonal replicates, two did not belong 

to the population, and one seemed to be a technical replicate. To identify possible outliers, we 

examined the distribution of the remaining 135 transcriptomes and their correlations. No clear outliers 

could be identified based on the distribution of absolute expression levels (Supplementary Note 

Figure 2.5), however, based on the transcriptome correlations we could see that some individuals had 

lower correlations with the remaining samples (Supplementary Note Figure 2.6). A principal 

component analysis was performed to better visualise the set of uncorrelated samples, where the first 
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principal component explains 81% of the observed variation between samples and the second 

principal component explains 11% of the observed variation between samples (Supplementary Note 

Figure 2.7). Samples were then clustered based on the correlation of their expression profiles and we 

observed two clear outlier groups that were removed for downstream analyses by using a branch cut 

at a height of 25,000 (i.e. the first big separation between clusters), which represents the Euclidean 

distance between clusters based on correlation values (Supplementary Note Figure 2.8). This 

decreased the sample size of our eight-year-old population to a final set of 100 individuals. For future 

studies, the population size will be increased to analyse the variation between these groups and 

possible causes thereof. 

 

The final datasets for co-expression and eQTL analyses consisted of 24,861 genes for the three-year-

old population and 25,267 genes for the eight-year-old population (Supplementary File 2.1). A total 

of 22,885 genes in these datasets are shared between the two populations, with unique genes in each 

population having seemingly low expression levels (Supplementary Note Figure 2.8).  
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Supplementary Note Figure 2.1: Sequence quality histograms showing the mean quality across each base position 
(bp) in the read. Phred score assigned per base shows the quality of the identification of nucleobases generated by 
sequencing. All samples passed the quality test with very good quality scores > 25 (green region) over the full length of 
the reads.

 
 
 



95 
 

 

 

 

 

Supplementary Note Figure 2.2: Technical repeatability of four random xylem mRNA-seq samples in the eight-
year-old backcross population. Pearson correlation values (r) were used to compare the absolute expression values 
between technical replicates. All four samples had a very high correlation (r = 0.99) between technical replicates. 
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Supplementary Note Figure 2.3: Identity-by-decent (IBD) analysis results for 1,524 transcriptome-derived SNP 
genotypes vs. SNP chip genotypes of 144 eight-year-old individuals. Black squares indicate a full or approximately 
1:1 match between the SNP chip and RNA-seq SNP genotypes of a sample. Possible clonal replicates (circles) can be 
identified where a sample matches both itself and another sample, as well as the RNA-seq SNP genotypes for both samples 
in the next figure. Yellow squares indicate an approximate 50% match, as expected from full-siblings, and white squares 
indicate a sample that does not belong to the backcross family (triangle). The sample that is not part of the progeny is 
MC208, which does not carry any of the F1 hybrid parent alleles. 
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Supplementary Note Figure 2.4: Pairwise identity-by-decent (IBD) analysis results for 1,524 transcriptome-
derived SNP genotypes of 144 eight-year-old individuals. Black squares indicate a full or approximately 1:1 match 
between the RNA-seq genotypes. Clonal replicates (circles) can be identified where a sample matches both itself and 
another sample, as well as the SNP chip genotypes for both samples from the previous figure. Blue squares indicate an 
approximate 50% match, as expected from full-siblings, and white squares indicate a sample that does not belong to the 
population under study (triangles). The two samples that are not part of the progeny are MC208, which does not carry 
any of the F1 hybrid parent alleles, and MC459, which matches the F1 hybrid parent (A380).
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Supplementary Note Figure 2.5: Boxplots showing the distribution of TPM values of 36,349 genes for 135 individuals from the eight-year-old population. The y-axis is limited 
to TPM = 50 to remove noise and visualise the interquartile range (blue bars) of each sample to identify possible outliers.
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Supplementary Note Figure 2.6: Heatmap showing all-by-all Spearman rank correlations of the expression levels 
of 36,349 genes for 135 individuals from the eight-year-old population. Gene expression profiles were compared 
between samples and visualised to identify outlier groups that may have an influence on downstream analyses. 
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Supplementary Note Figure 2.7: Principal component analysis scatterplot of 135 individuals from the eight-year-
old population, calculated from the expression levels of 36,349 genes. The first principal component (x-axis) explains 
81% of the observed variation between samples and the second principal component (y-axis) explains 11% of the observed 
variation between samples. Ellipses represent the confidence interval for each group of samples.
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Supplementary Note Figure 2.8: Dendrogram showing the clustering of 135 eight-year-old samples based on their gene expression profiles. A cut-off height (solid red 
line) of 25,000 (i.e. the first big separation between clusters) was used to identify outlier groups. The height represents the Euclidean distance between clusters based on 
correlation values. The final group of 100 samples used in downstream analyses is highlighted (dotted red line).
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Supplementary Note Figure 2.9: Gene overlap between three- and eight-year-old datasets. A) The number of genes 
shared between the three-and eight-year-old datasets (22,885) is shown in the overlapping region in the Venn diagram. B) 
A few descriptive statistics for the genes unique to each dataset and the overlapping genes are summarised in the table 
with corresponding colours. C) The log-transformed distributions of transcript abundance for genes unique to the three-
year-old population (first panel), genes overlapping between the two populations (second panel), and genes unique to the 
eight-year-old population (last panel) are shown. 
 

Supplementary Note Table 2.1: Summary of RNA-seq mapping quality per population. Reads were aligned to the 
reference genome of E. grandis v2.0 using STAR 

Population Number of 
individuals Average read length Average number of 

input reads 
Average uniquely 
mapped reads (%) 

Average 
mismatches per 

base (%) 
Three-year-old 156 49 bp 25 million 86% 0.90% 
Eight-year-old 144 150 bp 36 million 91% 0.93% 
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2.9.3 Supplementary Files 

Supplementary File 2.1: TPM Values 
This file contains Transcript Per Kilobase Million (TPM) values for genes expressed in at least 25% 
of the population. Three worksheets are presented in this file: (1) a legend for the file; (2) TPM values 
of 24,861 genes for 156 individuals in the three-year-old E. urophylla backcross population; and (3) 
TPM values of 25,267 genes for 100 individuals in the eight-year-old E. urophylla backcross 
population. 
 
Supplementary File 2.2: Heritability Values 
This file contains information on the broad-sense heritability (H2) values of genes for non-clonal and 
clonal pairs. Four worksheets are presented in this file: (1) a legend for the file; (2) non-clonal 
correlations, clonal H2 values, and average TPM values of 25,307 genes; (3) GO enrichment of genes 
with heritability values in the top 10% and bottom 10%; and (4) heritability values of genes involved 
in xylogenesis. 
 
Supplementary File 2.3: Genetic Linkage Map 
This file contains information on the genetic linkage map constructed from transcriptome data. Each 
marker can be represented by a gene and the physical and genetic positions are given for each marker, 
along with descriptive statistics of the read coverage per marker and overall coverage. The 
significance of distortion is indicated per marker, as well as the genotypes for three-year-old and 
eight-year-old individuals. See bottom of table for footnotes. 
 
Supplementary File 2.4: eQTL Analysis Results 
This file contains eQTL results per population and eQTL overlap scores between populations. Four 
worksheets are presented in this file: (1) a legend for the file; (2) eQTL results for three-year-old 
population; (3) eQTL results for eight-year-old population; and (4) eQTL overlap results between 
three- and eight-year-old population. See bottoms of tables for footnotes. 
 
Supplementary File 2.5: Fisher’s Test & GO Enrichment Results 
This file contains results of Fisher's tests and GO enrichment analyses for the three- and eight-year-
old population. Nine worksheets are presented in this file: (1) a legend for the file; (2) GO enrichment 
terms for gene modules and hotspots in the three-year-old population; (3) GO enrichment terms for 
gene modules, hotspots, split-hotspots, and module-hotspot overlaps in the eight-year-old population; 
(4) GO enrichment terms for gene sets unique to each population and differentially expressed genes 
with a log2 fold-change > 2; (5) Fisher's test results for significant overlaps between modules for the 
two populations and between the eight-year-old modules and hotspots; (6) a matrix showing the 
number of genes overlapping between modules for the two populations, with significant overlaps 
highlighted in yellow; (7) a matrix showing the number of GO terms overlapping between modules 
for the two populations, with significant overlaps highlighted in yellow; (8) a matrix showing the 
number of genes overlapping between modules and hotspots for the eight-year-old population, with 
significant overlaps highlighted in yellow; and (9) a matrix showing the number of genes overlapping 
between modules and split-hotspots for the eight-year-old population, with significant overlaps 
highlighted in yellow. 
 
Supplementary File 2.6: Gene Information  
This file contains general information on genes for both populations. Four worksheets are presented 
in this file: (1) a legend for the file; (2) information on 24,861 genes for the three-year-old population; 
(3) information on 25,267 genes for the eight-year-old population; and (4) a list of genes involved in 
xylogenesis and stress response, secondary cell wall transcription factors and transcription factors 
involved in stress response. 

 
 
 


