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ABSTRACT Here, we present four archaeal metagenome-assembled genomes (MAGs)
(three Thaumarchaeota MAGs and one Thermoplasmatota MAG) from a polar upwelling
zone in the Southern Ocean. These archaea harbor putative genes encoding enzymes
such as polyethylene terephthalate (PET) hydrolases (PETases) and polyhydroxybutyrate
(PHB) depolymerases, which are associated with microbial degradation of PET and PHB
plastics.

Nitrosopumilus and Marine Group (MG) II archaea affiliated with the phyla
Thaumarchaeota and Thermoplasmatota, respectively, are widely distributed in

shallow depths of the oceans (1–5). However, except for their capacity to sequester
nitrogen and carbon in the oceans (1, 6, 7), their metabolic functions, including those
linked to the biodegradation of plastic polymers, remain largely unclear. To reduce this
knowledge deficit, we present four draft genomes of Nitrosopumilus and MG II archaea
from the Southern Ocean. We further explore their metabolic potential linked to the
degradation of polyethylene terephthalate (PET) and polyhydroxybutyrate (PHB).

Two water samples (10 L each) were collected from depths of approximately 5 m and
110 m at a polar upwelling zone (54.007°S, 0.011°E) during the SCALE (Southern oCean
seAsonaL Experiment) expedition in October and November 2019. After sequential filtra-
tion with 0.5-mm glass-fiber and 0.2-mm polycarbonate filters, DNA was extracted from
the latter size fraction using the DNeasy PowerWater kit (Qiagen, GmbH, Germany) as
detailed in the manufacturer’s protocol. Sequencing libraries were generated using the
Nextera XT kit (Illumina, Inc., San Diego, CA, USA) and sequenced using an Illumina
NovaSeq S4 platform (2 � 150 bp) by Admera Biopharma Service Department (South
Plainfield, NJ, USA). The Metagenome-ATLAS v2.4.4 workflow (8) was used to generate
metagenome-assembled genomes (MAGs). ATLAS incorporates BBTools v38.87 for qual-
ity control (9) and metaSPAdes v3.14.1 for assembly of contigs (10). These assemblies
were binned into MAGs using MetaBAT2 (11) and MaxBin2 (12). The resultant MAGs
were refined and dereplicated with DASTool v1.1.2 (13) and dRep v2.5.4 (14), respec-
tively. Completeness and contamination levels were computed using CheckM v1.1.3
(15). MAGs were uploaded onto KBase (16) for taxonomic assignments using GTDB-Tk
v1.0.2 and the Genome Taxonomy Database (GTDB) reference release 89 (17). Also, the
average nucleotide identity (ANI) values for these MAGs were calculated against each
other using FastANI v1.32 (18). For this study, we selected four nonredundant archaeal
MAGs, i.e., Nitrosopumilus and MG II, MG IIa-L1 (family Poseidoniaceae), MG IIb-O2, and
MG IIb-O3 (family Thalassoarchaeaceae). The NCBI Prokaryotic Genome Annotation
Pipeline (PGAP) v6.1 (19) was used for annotation of these MAGs, and the resultant data
are presented in Table 1. To screen for plastic-degrading genes in these MAGs, protein-
coding sequences were predicted with Prodigal v2.6.3 (20), and then HMMscan v3.1b2
(21) was implemented against profiles generated from cluster analysis of reference
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sequences obtained from the Plastics Microbial Biodegradation Database (PMBD) (22)
using MCL v14-137 (23). Putative hits homologous to plastic-degrading genes were fur-
ther analyzed using the HHpred interactive server with HHsuite v3.3.0 (24–26) at high
similarity specification (.95% probability), which compared the secondary structures
and domains of these predicted genes with references in the Protein Data Bank (PDB)
mmCIF70 (27) and Pfam-A v34 (28) databases, respectively. Unless otherwise stated,
default parameters were used for all software.

As shown in Fig. 1, this analysis resulted in the prediction of multiple genes encod-
ing enzymes that catalyze PET (29, 30) and PHB (31) plastic degradation in MG II
genomes. The Nitrosopumilus genome harbored only putative phthalate dioxygenase
(PDO) and reductase (ophA1) genes, which are associated with the degradation of the
plasticizer phthalate (7, 32).

TABLE 1 General features of archaeal MAGs from a polar upwelling zone in the Southern Ocean

Genomic feature

Data for MAG:

S9-metabat_32
(Nitrosopumilus)

S10-maxbin_48
(MG IIa-L1)

S10-metabat_04
(MG IIb-O2)

S10-metabat_06
(MG IIb-O3)

No. of raw paired-end reads 63,532,776 53,101,891 53,101,891 53,101,891
Genome size (bp) 988,157 1,829,283 1,426,462 1,466,140
GC content (%) 30.98 46.22 38.01 35.85
No. of contigs 181 554 63 50
Minimum contig length (bp) 1,500 1,000 1,500 1,500
N50 (bp) 6,719 4,282 47,072 46,931
Completeness (%)a 91.13 66.67 82.31 75.73
Contamination (%)a 0.97 1.2 6.06 0
No. of predicted genesb 1,320 1,767 1,280 1,313
No. of coding sequences
(with protein)b

1,278 1,719 1,241 1,272

No. of tRNAsb 36 36 29 35
No. of rRNAsb 1 3 2 3
No. of noncoding RNAsb 2 2 2 2
GenBank assembly accession
no. for GTDB closest
reference strainc

GCA_001437625.1 GCA_009937025.1 GCA_003672125.1 GCA_002496735.1

ANI (%)d 93.49 79.83 79.76 93.34
BioSample accession no. SAMN23575727 SAMN23575728 SAMN23575729 SAMN23575730
GenBank accession no. JAJPRB000000000 JAJPRC000000000 JAJPRD000000000 JAJPRE000000000
SRA accession no. SRR17224336 SRR17224335 SRR17224335 SRR17224335
a Estimated with CheckM v1.1.3 (15).
b Numbers obtained from annotation with NCBI PGAP v6.1 (19).
c GTDB release 89 nearest reference strain determined with GTDB-Tk v1.0.2 (17).
d ANI between MAG and nearest GTDB reference strain estimated with FastANI v1.32 (18).

FIG 1 Predicted plastic-polymer-degrading genes, with their orientations indicated, for contiguous sequences of archaeal MAGs from a polar upwelling
zone in the Southern Ocean. The predicted genes are shown as arrows, indicating contigs in ascending order. The secondary structure and domains were
compared to references in the PDB mmCIF70 and Pfam-A databases, respectively, using HHpred, which yielded high similarity of .95% probability. Labels
above the arrows represent contig identification numbers, as specified in the protein-coding sequence from Prodigal. The numbers before and after the
underscore represent the sequence position in the genome and the gene position within the contig, respectively. Labels below the arrows show the
distance between the annotated start and end, equated as the gene size and represented by the relative length of each arrow.
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Data availability. Raw sequence reads (SRA accession numbers SRR17224336 and
SRR17224335) are available in the NCBI GenBank database under BioProject accession number
PRJNA785751. The archaeal MAGs were assigned BioSample numbers SAMN23575727 to
SAMN23575730, as well as GenBank accession numbers JAJPRB000000000, JAJPRC000000000,
JAJPRD000000000, and JAJPRE000000000. The versions described in this paper are the first
versions (JAJPRB010000000, JAJPRC010000000, JAJPRD010000000, and JAJPRE010000000).
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