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Abstract

The photovoltaic (PV) system’s output power varies owing to solar radiation’s irregularity,
which confines their usage for various applications. Implementation of maximum power
tracking (MPT) algorithms increases the efficiency and power generated from solar cells.
When the array is partially obscured by clouds or structures, several local maximum power
peaks (LMPPs) appear in the solar cell characteristics. Traditional MPPT algorithms, rather
than following the global peak power point (GPPP), are preferable to following the local peak
power point. If partial shading causes numerous LPPPs, it is necessary to look into how the
MPPT technique can keep track of GPPP. Employing soft computing approaches such as the
hybrid neural network/fuzzy method with variable step size perturb and observing MPPT, it
is possible to trace the GPPP and also augment solar energy extraction. The present research
paper focuses on hybrid fuzzy/neural network MPPT integrated with a high-step-up DC-DC
converter to harvest the utmost power from the solar PV array. The voltage transients are
reduced by controlling the DC link voltage along with solar radiation and temperature
variations. The proposed MPPT technique is shown to be effective under both uniform and
partial shade conditions in a series of simulations. From the test results, the efficiency of the
overall system has increased from 91 to 98% for partial shading and uniform operating
conditions.
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Abbreviations PSO Particle swarm optimization

PV Photovoltaic PVH Positive very high
MPPT  Maximum power point tracking ANFIS Adaptive neuro-fuzzy inference system
LPPP  Local peak power point P&O Perturb and Observe
GPPP  Global peak power-point PS Positive small
ANN Artificial neural network IC Incremental conductance
DG Distributed Generation PVsS Positive very small
PM Positive medium PH Positive high
PLL Phase-locked loop

Introduction

Increasing demand for electricity in recent decades has necessitated the search for renewable
energy sources, resulting in considerable interest in power plant diversification. Additionally,
the growth of non-conventional energy has been remarkable, in part because these energy
sources are the leading competitors to harmful fossil fuel-based power systems, which are
becoming more and more popular. For distributed energy generation systems, solar and wind
power emerged as the most important sources of green energy in this context (DGs). To be
more explicit, photovoltaic cell-based solar energy generation has become a necessity for DG
system improvement [1,2,3,4,5]. Electrical energy is generated by photovoltaic panels (PV
modules). Several PV cells are coupled to produce these modules, which give a practical
voltage and electric current value as well as a set that adequately protects the cells.

Solar cells created in the laboratory and built of monocrystalline silicon have a conversion
efficiency of around 25%, which is a low figure when compared to supplementary sources of
current energy generation, such as hydropower and wind power. [6]. In addition, ecological
parameters such as the intensity of solar radiation and temperature have an impact on the
voltage and output current of PV modules, which is a significant consideration. MPPT is a
technique for pulling out the most energy from a panel while taking into account variables
such as voltage and current. Increased study of maximum power point (MPP) search
algorithms has led to increased efficiency and improved utilization of power production
throughout the day as a consequence of the increase in research into MPP search algorithms.
[7]. There are many issues associated with PV systems that go beyond simply supplying energy
to grids, such as finding the most efficient way to get the most energy from solar PV
configurations. For the MPP, several methods have been used [8]. However, the quantity of
energy produced by PV systems may be negatively affected by partial shading. To deal with
this problem, most PV systems linked to the network have adopted control approaches and
converter topologies.

MPPT approaches can be categorized into four groups
[9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26], such as model-based techniques,
heuristic techniques, intelligent prediction-based techniques, and hybrid techniques. The
model-based techniques have the following methods: constant current, constant voltage,
look-up table technique, gradient descent method, curve fitting method, and optimal fixed
voltage method. The incremental conductance (IC) technique, perturb and observe (P&O)
technique, modified P&O technique, modified IC method, hill-climbing method, and beta
method are all heuristic techniques. Intelligent prediction-based techniques have the



following methods: artificial neural networks (ANN), fuzzy logic control, particle swarm
optimization (PSO), and the adaptive neuro-fuzzy inference system (ANFIS).

The open-circuit voltage (Voc) fraction strategy is a model-based, or fixed-step approach that
predicts the peak power point value by using the open-circuit voltage value as a reference,
supposing it is linearly proportional to Vmax. A voltage sensor must be added to use this
method, which is quite simple to do. The maximum power output is never even close to being
reached in an assessed solar PV system that would be continuously shut down to verify the
current value of the open circuit voltage. P&O [7,8,9] or incremental conductance [10, 11] are
two search-based methods that use perturbing tactics to enhance the efficiency of MPPT
methods. Other model-based techniques that use these perturbing strategies include P&O.
Since they do not need any information about the short-circuit current or open-circuit
voltage, they may be employed in any solar PV system. The process of making these devices
comes with several critical issues. When irradiance or partial shading fluctuates continuously
and rapidly, these algorithms’ peak point of processing may fail due to a drop in the local peak
power. Fuzzy logic and ANN were also developed to improve the search for the MPP’s
performance. However, there are some advantages to using smart controls, such as the fuzzy
logic control, over the standard P&O control. There are also some benefits to a neuro-fuzzy
hybrid intelligent control system related to the P&O technique.

A further way to speed up the search for the location of optimum power is to use ANN. As a
result of training a neural network using P&0’s method for finding the highest power point,
an ideal increase or decrease in the duty ratio was generated [15,16,17]. Even though
standard MPPT algorithm methods work well when PV panels are uniformly exposed to the
sun, their efficiency can suffer when they are subject to partial shadowing. MPPT techniques
listed above are typically only capable of delivering power to the local peak power point
(LPPP) rather than the global peak power point (GPPP) [18]. Partial shading challenges in the
hunt for MPP are being dealt with using bioinspired optimization algorithms because of these
restrictions. Consequently, the MPPT approaches efficiency has deteriorated. As a result,
meta-heuristic optimization methods are often used to identify the GPPP in the literature
[18]. PSO (Particle Swarm Optimization) is one of the methods among them [19] because of
its balance between performance, complexity, and maturity compared to numerical or
heuristic optimization methods [20, 21]. Because the BAT-based MPPT method always
reaches the GPPP, it can decrease the effects of partial shading, thus enhancing PV system
performance [22, 23]. The combination of the P&0O method and ant colony optimization was
found in [24] to have faster GPPP convergence and reduced steady-state fluctuations than
similar algorithms based on the PSO algorithm. Thus, new techniques for addressing partial
shading and LMPP optimization are required. It is required to set up the PV system in such a
way that it may be used to compare the MPPT algorithms described above [25, 26] before
making a decision. The optimization-based MPPT algorithm is taking a long time to find the
global power point because it depends on the number of populations and iterations used in
the algorithm. Maximum power is trapped at the local peak if conventional MPPT algorithms
like P&O MPPT and incremental conductance MPPT are used. The main reason for this
problem is a fixed step size or a changed duty cycle. Variable step size MPPT has been
developed to avoid this problem [27], but another issue arises, namely, power oscillation
around the global peak point, as a result of using two fixed step sizes and a step size



determined by changing the power and voltage. In addition, various conditions must be met
for the techniques to work properly:

e The system should be able to monitor and respond to changes in energy as quickly as
possible.

e For the PV system to work better, the MPPT control needs to respond quickly and
dynamically.

e After reaching the MPP, for any MPPT method’s tracker, it is difficult to keep it in a
fixed location. Maintaining a constant rate of operation is essential for minimizing the
steady-state error.

e When making an MPPT control system, you have to make sure it can handle
disturbances like input noise or inaccurate measurements.

e MPPT control systems must be efficient in both low and high irradiance circumstances,
as this is critical to their overall performance. Many MPPTs are less efficient when
there isn’t a lot of light because the controller parameters were set for the rated
power and a high level of irradiance.

e The above requirement has been addressed by the hybrid MPPT, i.e., by combining
concepts of fuzzy logic and neural networks to provide variable step size that
automatically changes based on the power and voltage of the PV panel. As an example
of how important this work is, analytical and simulation results are shown for a solar
PV system with a two-stage power transfer using an MPPT approach built on the
hybrid fuzzy/neural variable step size PO method to achieve GPPP when the solar PV
is exposed to both continuous sunlight and partial shade.

The organization of the paper is as follows: PV array modeling is presented in the second
section. The third section describes the concept of partial shading. High-step-up DC-DC
converter operation is presented in the fourth section. The proposed Hybrid Fuzzy
Logical/Neural Network-Based Variable Step Size P&0O MPPT Algorithm is explained in the fifth
section. The sixth section provides a comprehensive analysis of the simulation of the
proposed system. Experimental verification of the proposed work is presented in the seventh
section. Concluding remarks on the proposed work are presented in the eight section.

Modeling of the PV Cell Array

The equivalent circuit of the PV system is depicted in Fig. 1. The leaking resistance Rs, which
exceeds the ideal diode properties, is represented by a continuous resistance [25]. It is
necessary to first model the PV to execute a comprehensive system simulation with precise
system characteristics because the voltage-current relation is exceedingly nonlinear.
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Fig. 1. PV array equivalent circuit [25]

The short-circuit current and open-circuit voltage are determined by the arrangement of PV
array cells in series and parallel.

Voo = N; x Vg (1)
Iso = Np x L, Voo = Ng X Vo (2)

According to [26, 28], It is possible to calculate the PV’s P-V and |-V characteristics as follows.
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(?(1’L+ILARS})
I; =Ip x | exp\ %7 1
E (4)
.l q5q 1 1
-1 (22) el )
N (5)
I
I, = Ipy — I — VL +RL X Rg
SH "



Array type: 1Soltech 1STH-350-WH,;
3 series modules; 1 parallel _ﬁ_t_'_'i_!‘?_ﬂ?_

: 2 SOII08 W "
10# 1 KW/im?
<
[=
O 5L 05KkWm 4
‘5
(&
0.1 kW/m?
0 L 1 1 L 1 L~ o
0 20 40 60 80 100 120 140 160
Voltage (V)
1500 | | | | , [ | | ]
:f':_'f 1000 1
Q
3
o 500r .
D - + 1 1 |
0 20 40 60 80 100 120 140 160
Voltage (V)

Fig. 2. a and b IV and PV characteristics of the PV Array

Equation (3) is used, when the irradiation level is set to Sy and the operating cell temperature
is set to Tc. When irradiation levels are varied while the cell temperature remains constant, it

is likely to obtain the I-V and P-V characteristics by calculating PV current, power, and voltage,
as depicted in Fig. 2a and b.

Power, voltage, and current all change as a result of the changing temperature and irradiance.
The change in current and power concerning irradiance is shown in Figs. 2 and 3.
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Fig. 3. a |-V characteristics of PV cell Array due to partial shading conditions. b PV characteristics of PV
cell Array under the influence of partial shading conditions

Operation of Partial Shading Systems with Maximum Power

The kind of Photo-Voltaic module, the bypass diode design details, the string layout, and the
nature of the shadow all have an impact on shading. The energy lost due to shading is
compounded by a mismatch in alighnment between the current flowing through a single string
of modules and a loss resulting from an array’s parallel strings having electrical voltages that
are not aligned properly [29].

When polarized, the diodes divert the current from that substring, reducing the impact of
shadowing on power generation in a PV system. While shading a cell, the cell’s electrical
current decreases, and since that current is incompatible with the electrical current of the
substring, the current must be reverse polarized for the diode to work correctly (acting as a
charge). For a cell to operate near its voltage, a substring’s total voltage must be greater than
zero. Many factors contribute to the overall current-voltage curve, including individual
substring curves, as well as the series-shunt configuration of individual strings.

During partial shading situations, the converter’s global peak power point tracking process,
also known as GPPPT, seeks to calculate the optimum global power production value from
between the many |-V curves of the unit that emerge from the various partial shading
conditions. Once the DC-DC converter is optimized, it can supply the highest power output
independent of the PV panels’ partial shading. While PV systems can be partially shaded, the



DC-DC converter and GPPP must operate with agility and precision, regardless of irradiance,
to provide maximum power generation at all times and under all irradiance conditions
[30,31,32,33].

High Step-Up DC-DC Converter

To achieve the needed DC bus voltage for the system, a high-step-up DC-DC converter with
an active switching LC-network is employed in this study, which makes use of the front-end
stage of a photovoltaic (PV) system to provide the requisite DC bus voltage for the system. In
this transformer-less DC-DC converter, just a single capacitor and a single diode are needed,
but the voltage gain is greatly enhanced by combining the ASL (active switched inductor) and
ASC (active switched capacitor) networks, which are connected in a compound configuration.
By using a switched capacitor instead of a capacitor, this converter avoids the high
instantaneous currents created by the capacitor, which is a disadvantage of traditional
voltage-boosting devices that employ a capacitor. Figure 4 depicts the topology of the active
switching LC network in the high-step-up DC-DC converter with active switching.
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Fig. 4. DC-DC converter with a high step-up ratio and an active switching LC-network

The ASLC converter topology combines an ASC system network with an original ASL system
network. There is a common switch S1 between the original ASL and ASC networks, which
includes inductors L1 and L2 as well as switches Q1 and Q2. Because only a single diode and
a single capacitor are added, the basic structure is maintained.

Proposed Hybrid Fuzzy Logical/Neural Network-Based Variable Step Size P&0O MPPT
Algorithm



Traditional perturb and observe methods often use constant step-size perturbations,
resulting in a struggle between reducing PV array power output oscillations about the peak
power point and achieving a convergent increasing time towards the peak power point (MPP).
A large step-size allows a quick dynamic reaction to abrupt changes in irradiance but results
in significant steady-state fluctuation of the PV array’s power output near the peak power
point and power loss. Smaller step sizes help to reduce the fluctuation of the PV array’s power
output about the peak power point; however, this results in a slower response to abrupt
changes in solar irradiance because of their slower dynamic response. Minimum steady-state
oscillations and quick dynamic responsiveness necessitate a variable step-size MPPT. In order
to address the restrictions of the typical fixed step-size P&0O MPPT algorithm, the hybrid fuzzy
logic/neural network approach has been used here to control the step size. Figure 5 depicts a
hybrid fuzzy logic/neural network-based variable step-size P&0O MPPT algorithm.
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Measuring Vpv, [pv Logic /

Calculate dV & dP
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Fig. 5. Flowchart for hybrid fuzzy logic/neural network variable step size MPPT

The PV array’s terminal current and voltage are Ipv and Vpv, respectively. The proposed
method works by providing a variable step-size reference voltage Vpv to the associated power
converter. Based on Mamdani’s fuzzy logic rules, the variable step-size control action was
determined using a framework of Max-Min operations. There are four main components to
the fuzzy logic controller, as depicted in Fig. 6. The controller, which consists of 25 rules, was
built using “if/then” logic. As stated in Table 1, the fuzzy rule labels are as follows: “positive
medium (PM),” “positive very small (PVS),” “positive small (PS),” “positive very high (PVH),”
and “positive high (PH).”
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Fig. 6. FLC-based variable step size control

Table 1. Fuzzy step size control rules

Step Size
PVSs PSs MPp HPp PVHh
dpP/av PVSs PVHh PVSs PVSs PSs PSs
PSs PVHh PVSs PVSs PSs PSs
MPpp PSs PSs PSs PVHh PVHh
HPp PSs PVH PSs PVSs PVHRh
PVHh PVSs PVSs PVHh PHh PVHR

The FLC has two inputs: the variable perturbation step size and the fixed perturbation step-
size of the PV voltage. Using the rules laid out in Table 1, the fuzzification block assesses the
P-V curve’s slope and the perturbation step size, and the rules are used to make inferences.
Figure 7a and b show that defuzzing the fuzzy sets generated by the inference process using
membership functions results in a variable step size controller control signal. The fuzzy logic
controller’s output variable step size “dv” is the specified outcome of each of the 25 rules it
implements.
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Fig. 7. a The FLC’s input membership function. b The FLC’s output membership function
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The data collected from the fuzzy logic-based variable step-size MPPT is used to train the
artificial neural network variable step-size MPPT. Finally, the output of the FL variable step-
size MPPT and neural-network variable step-size MPPT is averaged and given to the PWM
generator to control the DC-DC converter, which is used to harvest the highest amount of
energy possible from the PV cell array. Figure 8 depicts a hybrid fuzzy/neural network MPPT
with variable step size.

Duty cycle
10
PWM Generator

Fig. 8. Hybrid fuzzy logic / neural network variable step size MPPT

Fig. 9. Simulink model of the solar PV three-phase grid system
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Results and Discussion

A Simulink diagram of a PV system coupled to the three-phase network is depicted in Fig. 9.
A DC-DC converter as well as a three-phase full-bridge inverter are used to link the solar
panels to the grid for power generation. The control algorithm consists of one MPPT and one
phase-locked loop (PLL) and all of the controllers, including the inverter DC bus controller,
boost converter, and an MPPT controller.

The output terminal current of the grid-connected inverter and the DC link voltage are both
managed by the grid. The duty cycle generated as a result of the hybrid (fuzzy logic and neural
network) MPPT algorithm is followed by the controller of the high-gain boost converter.

DC energy is converted to AC energy by an inverter that also manages the synchronization of
the current output with the grid voltage and DC-link voltage. The controller has a voltage-
regulating outer loop and a current-controlling inner loop. To maintain a constant DC-link
voltage and keep the output current synchronized with the grid voltage, the inverter performs
a crucial job. The power rating of the two series-connected PV panels is 2100 W at 258 V, and
the grid rating is 400 V at 50 Hz.
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Fig. 10. Simulation results at 1000 W/m?
(i) Under uniform irradiance

The PV panel is connected in series, and the irradiance is fixed at 1000 W/m2. The
corresponding PV power, grid voltage, grid current, DC link voltage, and grid power are shown
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in Fig. 10. The simulated results show that the PV power is around 2080 W and the grid power
is around 1990 W. The voltage across the DC connection is also kept at 700 volts, while the
grid voltage and current are 400 volts and 4.975 a, respectively. The efficiency was calculated
for the present operating condition and found to be 95.67%.

Similarly, in the second condition, the irradiance is fixed at 500 W/m? and results such as PV
power, grid voltage, grid current, DC-link voltage, and electrical grid power are simulated. The
simulated outputs are demonstrated in Fig. 11. The results report that the PV and grid powers
are 1010 W and 990 W. The DC-link voltage is 700 V along with the electrical grid voltage and
the current is 400V and 2.52 A. Therefore, the efficiency of the system at 500 W/m? is
98.02%.
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Fig. 11. Simulation results at 500 W/m?
(ii) Under partial shaded conditions

The first PV panel’s irradiance is fixed at 1000 W/m2 whereas the irradiance on the second
PV panel is varied from 1000, 800, 600, and 400 W/m2 every 0.2 s to create a partial shading
effect. The corresponding results, such as PV power, grid voltage, grid current, DC link voltage,
and grid power, are shown in Fig. 12. When the second PV panel’s irradiance is 800 W/m2,
the PV power is around 1700 W, the grid power is around 1600 W, the voltage of the DC
connection is maintained at 700 V, the grid voltage is 400 V, and the grid current is 4 A. At this
point, the efficiency is 94.11%. When the second PV panel’s irradiance is 600 W/m2, the PV
power is around 1400 W, the grid power is around 1300 W, the DC link voltage is maintained
at 700V, the grid voltage is 400V, and the grid current is 3.125 A. The efficiency in this
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condition is 92.85%. When the second PV panel’s irradiance is 400 W/m2, the PV power is
around 850 W, the grid power is around 780 W, the DC link voltage is maintained at 700 V,
the grid voltage is 400V, and the grid current is 1.95 A. The efficiency in this condition is
91.76%. The maximum power from the PV panel is effectively extracted to the maximum
point employing hybrid fuzzy logic/neural network-based variable step size MPPT. Tables 2
and 3 demonstrate the output parameters and efficiency of the proposed MPPT under
different operating conditions and with other MPPTs.
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Fig. 12. Simulation results under partial shading effect

Table 2 The outcome of the proposed MPPT under different operating parameters

Operating Conditions Parameters Efficiency (1 )
PV Power (W) Grid Power (W) Grid current (A) (%)

Irradiance of 2080 19940 4.975 95.67

Panel 1 and Panel 2: 1000 W/m®

The irradiance of Panel 1 and Panel 2: 500 W/m?® 1010 990 24750 98.02

Irradiance of 1700 1600 4 94.11

Panel-1: 1000 W/m? and Panel 2: 800 W/m*

Irradiance of 1400 1300 3.25 92.85

Panel-1: 1000 W/m®™ and Panel 2: 600 W/m™

Irradiance of 850 780 1.95 91.76

Panel-1: 1000 W/m®™ and Panel 2: 400 W/m>™

15



Table 3 Comparisons of proposed hybrid MPPT with other MPPTs

References  MPPT Technique Parameters Efficiency (n )
PV Power (W)  Grid Power (W)  Grid current (A) (%)

[15] Fuzzy 2076 1978.4 4.94 95.3
[18] Neural Network 2075 1975.4 493 95.2
[34] Fuzzy 2070 1958.2 4.80 94.6
[35] Fuzzy 2072 1966.3 491 949
|36] Fuzzy 2071 1963.3 4.90 04.8
1371 Fuzzy, Neural with evolutionary algorithms 2073 1971.4 4.92 95.1
[38] Neural Network Estimator 2074 1968.2 492 94.9
[39] fuzzy 2073 1965.2 491 94.8
[40] SASV-MPPT approach and Lyapunov design method 2077 19814 4.98 95.39
QOur Paper  Hybrid Fuzzy Neural Nelwork 2080 1990 4.975 95.67

Experimental Verification

The experimental hardware step up for the hybrid Fuzzy logic/neural network-based variable
step size MPPT for grid-connected solar PV systems is shown in Fig. 13. The experimental
setup consists of eight panels with a rating of 250 W installed on the rooftop, a high-step-up
boost-converter, a DC-AC inverter, a single-phase AC grid, and a PIC microcontroller for
implementing MPPT and grid inverter control.

A=

Fig. 13. Hardware setup of the proposed work

The hardware model is tested under conditions of uniform irradiance and partial shading.
Figure 14 shows the PV voltage and current for constant irradiance. PV voltage is 255V, PV
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current is 7.58 A, and PV power is 1932.9 W. Figure 15 shows the DC link voltage, grid phase
“A” voltage, and current for the same conditions. The DC link voltage is kept at 698 volts, the
phase “A” voltage is kept at 228 volts, the phase “A” current is kept at 2.56 a, and the inverter
power is kept at 1766.4 watts. The efficiency of the system is 91.38%.

/ PV Voltage — 100 V/div

PV Current — SA/div

X axis — 10 ms /div

Fig. 14. PV voltage and current for constant irradiance

DC Link Voltage — 200 V/div

i

h'//-I"h;m' ‘a’ Voltage — 200 V/din

Phase *a’ Current — SA/div X axis — 20 ms /diy

Fig. 15. DC link voltage, grid phase ‘a’ voltage and current for constant irradiance

By covering the four panels with metal sheets, partial shading conditions are created, and
corresponding results are measured during the conditions. Figure 16 shows the PV voltage
and current for partially shaded conditions. PV voltage, current, and power after partial
shading are 210, 3.89 A, and 816.9 W, respectively. Figure 17 shows the DC link voltage, grid
phase “A” voltage, and current for the same conditions. The DC link voltage, phase “A”
voltage, current, and power from the inverter after partial shading are 697V, 230V, 1.1 A,
and 759 W. The efficiency of the system is 92.91%.
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Fig. 16. PV voltage and current for partial shaded conditions
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Fig. 17. DC link voltage, grid phase ‘a’ voltage and current for partial shaded conditions
Conclusion

The hybrid Fuzzy logic/neural network-based variable step size approach is used to construct
a global MPPT algorithm to optimize the max possible extraction of electrical energy available
in PV installations connected to an electrical grid. A comparable circuit that operates similarly
to a PV panel was used to better understand its operation. The panel’s behavior was
observed, and the current-voltage (I-V) and power-voltage (P-V) curves were plotted for
various solar-radiation values. Partial shading seems to cause a significant shift in the
characteristic curves. The full conversion system is explained and studied, from the solar
panel through the grid connection. So, an MPPT controller based on a hybrid FLC/ANN-based
variable step size was created to help the PV system approach GPPP. To make the proposed
method as close to real-world operating conditions as possible. Several scenarios of the
system were tested to better understand the hybrid Fuzzy logic/neural network-based

18



variable step size approach. The proposed MPPT is able to extract maximum power with a
maximum power ratio of 95 to 99%. The overall efficiency of the system is around 91.76 to
95.67 for uniform and partially shaded conditions. but these factors are not favorable for the
existing algorithm. The proposed algorithms are also capable of achieving convergence to the
global point even when partial shading is applied to the PV array, with the shortest time and
the least power variation in the steady-state. The optimization of fuzzy and neural networks
can be adopted using the latest algorithm to improve the maximum power ratio and efficiency
of the system, and it is considered a future scope for this work.

Data Availability

The data that support the findings of this study are available from the corresponding author
upon reasonable request.
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