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A B S T R A C T

Modelling measures of biodiversity for understudied taxa or regions is one method to address taxonomic and
geographic biases in biodiversity data. However, modelling biodiversity metrics, such as species richness, to
unsampled areas is only useful if predictions are reliable. As a result, testing the transferability of richness
models is necessary for assessing the potential for models to predict to unsampled areas. Here we test the
transferability of plant richness models between two reserves to examine if the richness-environment rela-
tionship from one reserve can accurately estimate richness patterns in the other reserve, using the vascular
plant species richness of the Waterberg region (savanna biome; northern South Africa) as a model system.
Six richness response variables (total species, grass species, herb species, woody species, genus, and family
richness) and a set of 16 predictor variables were analysed with three modelling approaches and two statisti-
cal techniques to build: (1) models comprising all available predictor variables, (2) models using a subset of
predictor variables chosen based on model performance, and (3) models using a subset of predictor variables
that reduce the difference in the environmental conditions between the two reserves. The models’ perfor-
mance in the training area varied considerably, but soil variables were consistently the most important pre-
dictors of plant richness. However, the transferability of all the models was consistently poor across all
modelling approaches and both techniques, possibly reflecting the degree to which each reserve contains
novel environments absent from the other reserve (despite being separated by only c. 60 km and sharing
vegetation types). Due to the poor performance of these richness models, they are currently not useful for
predicting richness to other areas in the vicinity of the reserves or in the broader region. However, in areas,
like the Waterberg region, that have high plant diversity and are poorly sampled, there may be value in con-
tinued development of richness models to address biodiversity gaps, thereby providing better data to inform
conservation decisions.
© 2024 The Authors. Published by Elsevier B.V. on behalf of SAAB. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. Introduction

The current knowledge of biodiversity, including species distribu-
tions and broad-scale patterns of species richness, is vulnerable to
taxonomic and geographic biases (Rocchini et al., 2011). These biases
can limit our understanding of the factors affecting the distribution
of biodiversity and can be problematic for effective conservation
planning (Ferrier, 2002; Hortal and Lobo, 2006). Modelling of biodi-
versity data for understudied taxa or regions is one method to
address these biases, particularly since this approach is more time-
and cost-efficient than extensive field-based data collection (Ferrier,
2002; Parmentier et al., 2011; Sequeira et al., 2018, 2016). Statisti-
cally estimating biodiversity for poorly studied groups or areas is also
increasingly becoming more feasible for a larger range of taxa and
portions of the world due to the greater availability of datasets online
(Guralnick et al., 2007; Sober�on and Peterson, 2004).

However, predicting biodiversity to unsampled areas or times is
only useful if the reliability of the results is understood. Transferabil-
ity is an attribute demonstrated by a model when it can be used to
accurately predict the response variable in unsampled areas or times
(Phillips, 2008). Explicitly testing the transferability of biodiversity
models is thus necessary to determine the reliability of a model’s pre-
dictions to areas or times beyond the dataset which was used to cali-
brate the model (Randin et al., 2006). Model transferability, for
instance across geographic space, can be assessed by using the model
(calibrated in the training area) to predict values in a new area (the
testing area) and comparing them to values actually observed in the
testing area (Fig. A1 in Appendix A) (Randin et al., 2006; Wenger and
Olden, 2012). In addition, testing transferability has considerable
practical value as an additional method of model evaluation, even
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when predicting to unsampled areas is not the main objective of the
study (Randin et al., 2006).

Model transferability varies between studies, with good transfer-
ability (Lauria et al., 2015; Peterson et al., 2003; Sequeira et al., 2016;
Sundblad et al., 2009), poor transferability (Capinha et al., 2018; Hor-
tal and Lobo, 2011; Randin et al., 2006; Wenger and Olden, 2012),
and both good and poor transferability (Duncan et al., 2009; Redfern
et al., 2017) reported in the literature. Several factors may affect
model transferability, including the number of predictor variables
(Low et al., 2020; Randin et al., 2006). Models using many variables
may be overfitted (i.e. the model is calibrated very closely to the
training data and lacks generality), whereas less complex models
with fewer variables can be underfitted and, therefore, also provide
inaccurate predictions (Warren et al., 2014). The effects that the
number of predictor variables have on model complexity are also
dependent on the modelling approach and data used and, therefore,
requires more investigation (Sequeira et al., 2018).

In addition, model transferability is usually negatively related to
the spatial extent of a study (Parmentier et al., 2011; Rousseau and
Betts, 2022), with greater distances between the areas typically
resulting in more substantial differences in environmental conditions
(Rousseau and Betts, 2022). Novel environments, which refer to envi-
ronmental conditions that are not present in the training area but
occur in the testing area, typically reduce model transferability (Hor-
tal and Lobo, 2011; Low et al., 2020; Parmentier et al., 2011; Randin
et al., 2006). Novel environments are problematic as the model has
not been calibrated outside of the initial environmental range and
while the model may be able to accurately predict the response vari-
able in the training area, it may not correctly predict beyond those
initial environmental ranges in the testing area (see Fig. A2 in Appen-
dix A) (Hortal and Lobo, 2011; Randin et al., 2006; Rousseau and
Betts, 2022).

When richness models are transferable, missing biodiversity data
can be estimated, providing information that can be potentially valu-
able for conservation planning in poorly sampled areas with little to
no information on the occurrence or distribution of species (Hortal
and Lobo, 2011). Therefore, in the absence of accurate species occur-
rences (to model species distributions), species richness is the next
best approximation of biodiversity for conservation planning exer-
cises (Hortal and Lobo, 2011). As a result, it is important to accurately
model species richness, and one way to potentially increase the
robustness of species richness models, especially for plant species, is
to build separate richness models for different growth forms, since
growth forms can be expected to respond differently to some envi-
ronmental conditions (Díaz and Cabido, 2001 and references within).
Indeed, predictions of the richness of different growth forms can pro-
vide habitat-specific information, which is useful for conservation
planning (Díaz and Cabido, 2001; McNellie et al., 2021). Furthermore,
testing the transferability of species richness models per growth
form, assuming the models perform well, will identify the environ-
mental correlates of each growth forms’ species richness and can
highlight the distribution of different growth forms as opposed to
just total species richness for different areas.

This study tested which environmental factors are most strongly
correlated with plant richness (total species richness and the richness
of different growth forms and at different taxonomic levels) within
two game reserves in the Waterberg Biosphere Reserve (WBR) and
tested the transferability of these richness-environment relationships
between the two game reserves. To identify which variables corre-
lated with the spatial variation in richness within the WBR, richness
data and environmental data were collected from plots within the
two reserves. Two statistical techniques and three modelling
approaches were used to explicitly account for the influence of the
number of predictor variables and the potential effects of novel envi-
ronments. If the richness models developed here display high trans-
ferability, then they could be used to predict plant richness in other
229
areas within the WBR and provide insight into areas that should be
targeted for conservation planning and/or potential vegetation sur-
veys in the future.

2. Methods

2.1. Study areas

Welgevonden Game Reserve (hereafter ‘Welgevonden’) and Lapa-
lala Nature Reserve (hereafter ‘Lapalala’) are both privately owned
game reserves in the WBR of northern South Africa, within the
Savanna biome (Fig. 1). The WBR was designated in 2001 by UNESCO
and aims to ensure sustainable socio-ecological land management of
the area (Pool-Stanvliet, 2013). Welgevonden and Lapalala are c.
60 km apart and both have a mountainous topography. Welgevon-
den, approximately 35,000 ha in size, is located in the south-east of
the WBR and, prior to becoming a game reserve, parts of the land
were used for farming (both crops and livestock; Slater and Long,
2012). Lapalala, approximately 48,000 ha in size, is located north-
east of Welgevonden, and parts of the land were also previously used
for farming (Womack, 2022). Both reserves have a wide variety of
animals including megaherbivores. In addition to both reserves being
located within the Savanna biome, they are also located within the
same vegetation type (Waterberg Mountain Bushveld; one of 87 veg-
etation types within the South Africa’s Savanna biome) and their
underlying geologies are both mainly sandstone of the Kransberg
Subgroup of the Waterberg Group (Fig. B1 in Appendix B) (Mucina
and Rutherford, 2006). The resulting soil is nutrient poor with high
acidity and plants have evolved and adapted to survive in these soil
conditions (Flood, 2015). The reserves, however, differ in their eleva-
tional range: Welgevonden’s elevation ranges between 1100 and
1700 m above sea level (with an average of c. 1300 m a.s.l.), whereas
Lapalala’s elevation ranges between 900 and 1200 m a.s.l. (with an
average of c. 1100 m a.s.l.) (Womack, 2022). The mean annual daily
maximum and minimum temperatures is 28.5 °C and 13 °C for Lapa-
lala (Womack, 2022) and 26.5 °C and 11 °C for Welgevonden (Codron,
2004), respectively. The mean annual rainfall for Lapalala is 546 mm
(Womack, 2022), and for Welgevonden is 642 mm (Jonathan Swart,
Welgevonden Ecologist, personal communication, 2021), although
large inter-annual variation in rainfall occurs in this region.

2.2. Data collection

Two datasets were analysed for this study, both of which were
collected using equivalent field methods. Each dataset comprises
quantitative plot-based data, composed of a complete vascular
plant survey and associated environmental data. The Lapalala
dataset was extracted from Womack (2022), and was collected
from January to March 2019, while the Welgevonden dataset was
collected from February to March 2021. The location of each plot
(a demarcated 20 £ 20 m square) was chosen prior to fieldwork
following a stratified sampling approach (with Lapalala stratified
by elevation and soil type, and Welgevonden stratified by vegeta-
tion type).

Total species richness, genus richness (number of different gen-
era) and family richness (number of different families) was calculated
per plot. In addition, grass species richness (i.e. Poaceae species only),
woody species richness (i.e. all woody tree and shrub species), and
herb species richness (i.e. all herbaceous, fern, succulent and geo-
phyte species) was determined for each plot, resulting in the six
response variables examined in this study: total species, genus, fam-
ily, grass species, woody species, and herb species richness.

Environmental data were also recorded at each plot. The cover of
rock, woody debris, bare soil, and leaf litter were visually estimated
for each plot. Soil from the four corners of each plot was collected
(roughly 1 kg of soil in total per plot). These samples were air dried



Fig. 1. a) The location of the Waterberg Mountain Complex (WMC) within South Africa. b) The location of the two reserves, Lapalala and Welgevonden, within the WMC and the
Waterberg Biosphere Reserve (WBR). c) Elevation maps of Lapalala (right) andWelgevonden (left).
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and sieved through a 2 mm sieve. At the Soil Laboratory of the Uni-
versity of Pretoria, particle size distribution was determined using
the hydrometer method (following, Kroetsch and Wang, 2008), soil
pH was determined using the H2O method (following, Hendershot et
al., 2008), the Mehlich 3 extraction method was used to determine
the concentration of potassium, calcium, magnesium, sodium, and
phosphorus in each soil sample (following, Ziadi and sen Tran, 2008),
and the dichromate redox titration method was used to determine
the percentage of organic carbon in the soil sample (following,
Skjemstad and Baldock, 2008).

Finally, an ASTER Global Digital Elevation Model (Version 3;
downloaded from 10.5067/ASTER/ASTGTM.003) was obtained for
both reserves and was used to extract aspect, slope, curvature, eleva-
tion, and topographic wetness index (TWI), for each plot. This was
computed using QGIS software (QGIS, 2021) with the ‘Slope, aspect,
curvature’, ‘Catchment area’, and ‘Topographic wetness index’ func-
tions. The ‘Point sampling tool’ function was then used to extract the
value for each variable at each plot. Potential direct incident radiation
(PDIR) was calculated following McCune (2007).

2.3. Data analysis

Environmental and vascular plant species richness data were col-
lected from a total of 180 plots for Lapalala and 65 plots for Welge-
vonden (Table 1) and used to model plot-level richness. Collinearity
between predictor variables was tested using the Pearson’s correla-
tion coefficient, with predictors excluded until all pairwise correla-
tions were <|0.75| (see Fig. C1 in Appendix C for the sequential data
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processing and analysis steps). Collinearity can be particularly prob-
lematic for model transferability (Dormann et al., 2013; Feng et al.,
2019) and, as a result, three highly correlated variables (magnesium,
sand fraction and silt fraction) were removed. This resulted in a final
dataset of 16 predictor variables.

A diagnostic plot was then constructed for each predictor variable
against each response variable to identify outlier and/or bad leverage
values in each dataset (following: Rousseeuw, 1991; Rousseeuw and
van Zomeren, 1990). Depending on the response variable, between
three and 10 plots were removed from the Lapalala dataset, and three
to eight plots removed from the Welgevonden dataset representing
strong outliers or bad leverage values.

After excluding collinear predictors and removing outliers and
bad leverage points, univariate linear and quadratic models were run
using generalized linear models (GLMs) for each predictor variable-
response variable combination, separately for both the Lapalala and
Welgevonden datasets, to determine if any predictor variables dis-
played a quadratic relationship with response variables. Quadratic
models were considered to perform better than linear models if (1)
the Akaike Information Criterion (AIC) value of the quadratic model
was lower than the AIC value of the linear model, and (2) the qua-
dratic model explained at least 5 % more deviance than the linear
model. When a quadratic model performed better than the linear
model, a quadratic term was included in the modelling approaches
for that predictor variable against the respective response variable in
subsequent GLMs. Linear models performed better than quadratic
models for the majority of the predictor variables in both datasets
(Table D1 in Appendix D).



Table 1
Summary of the response and predictor variables used in this study.

Variable Description and units

Richness data (6 response variables)

Total species richness Total number of species per plot
Grass species richness Number of grass species per plot
Herb species richness Number of herb species per plot
Woody species richness Number of woody species per plot
Family richness Family richness per plot
Genus richness Genus richness per plot

Environmental data (19 predictor variables)

Elevation In metres above sea level (m a.s.l.)
Slope Ranging from 0° (horizontal) to 90° (vertical)
TWI Topographic wetness index; used as a proxy for soil

moisture, where the higher the value is the wetter
the area is predicted to be (based on topography)

Curvature A value ranging from �1 (concave) to +1 (convex), with
0 being flat

PDIR Potential annual direct incident radiation (MJ cm-2 yr-1)
Soil pH The pH value of the soil
Carbon Percentage carbon by weight of the soil
Potassium Concentration of potassium in the soil sample (mg/kg

soil)
Calcium Concentration of calcium in the soil sample (mg/kg soil)
Magnesium Concentration of magnesium in the soil sample (mg/kg

soil)
Sodium Concentration of sodium in the soil sample (mg/kg soil)
Phosphorus Concentration of phosphorus in the soil sample (mg/kg

soil)
Sand Percentage of the soil sample comprised of sand

(%weight/weight)
Clay Percentage of the soil sample comprised of clay

(%weight/weight)
Silt Percentage of the soil sample comprised of silt

(%weight/weight)
Rock cover Percentage rock cover of each plot
Bare soil cover Percentage bare soil cover of each plot
Woody debris cover Percentage woody debris cover of each plot
Leaf litter cover Percentage leaf litter cover of each plot

Table 2
The minimum and maximum values and the number of novel environments for each
of the predictor variables for both the Lapalala (L) and Welgevonden (W) datasets.
Lapalala had a total of 180 plots sampled andWelgevonden 65 plots.

Predictor variables Minimum Maximum % Novel Environments

L W L W L W

Elevation 921 1134 1292 1661 37 62
Slope 0.00 0.97 19.69 30.12 4 2
Curvature �0.03 �0.03 0.01 0.03 1 17
TWI 0.20 0.40 14.37 15.70 1 2
PDIR 0.16 0.81 1.18 1.17 8 0
Rock cover 0 0 90 85 1 0
Woody debris cover 0 0 40 30 1 0
Bare soil cover 0 1 80 40 19 0
Leaf litter cover 0 1 80 50 11 0
Soil pH 4.02 4.41 6.91 6.44 8 0
Clay 6.12 11.00 24.49 33.00 51 2
Carbon 0.01 0.32 4.47 4.94 19 2
Potassium 2.08 22.54 51.15 153.69 96 82
Calcium 12.78 23.70 556.00 1251.02 25 8
Sodium 1.75 6.53 4.97 22.98 100 100
Phosphorus 0.15 4.43 7.19 36.23 97 80
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As a final data processing step, corresponding predictor variables
in the two datasets were compared to determine the number of plots
with novel environments (i.e. how frequently observations in one
dataset fell outside of the range of the same predictor variable from
the other dataset). For example, if a plot in the Welgevonden dataset
has an elevation value either above the maximum or below the mini-
mum elevation value in the Lapalala dataset then the plot would be
considered a novel environment for the elevation variable. Novel
environments are likely to negatively affect a model’s transferability
(Low et al., 2020; Randin et al., 2006). Therefore, predictor variables
having 50 % or more plots’ values as novel environments were
excluded from one of the modelling approaches (see below for
details) to test if it affected model transferability. The average per-
centage of novel environments per predictor variable were slightly
higher for the Lapalala dataset (30 %) compared to the Welgevonden
dataset (22 %) (Table 2; see Table D2 in Appendix D for more detail
on the ranges of the predictor variables).

2.4. Model building

Generalised linear models and generalized boosted models
(GBMs) were used to model richness values as a function of environ-
mental variables, with models repeated for each reserve, using a Pois-
son distribution (Elith et al., 2008; McCullagh and Nelder, 1989).
GLMs have been shown to exhibit stronger transferability in space
and time compared to other models (Hortal and Lobo, 2011; Randin
et al., 2006), and their outputs allow simple comparisons of coeffi-
cients (i.e. allowing co-efficients from models trained on two differ-
ent datasets to be compared). GBMs (also known as boosted
231
regression trees) provide a fundamentally different modelling
approach compared to GLMs, using an ensemble approach to achieve
the flexibility to model complex non-linear relationships and statisti-
cal interactions (Elith et al., 2008). Therefore, GBMs were used as a
second modelling method to test for transferability to account for dif-
ferences between statistical techniques. For all GBMs interaction
depth was set to 3 (as recommended by Elith et al., 2008 for datasets
of this size), and learning rate was sequentially reduced until > 1000
trees were produced (following Elith et al., 2008).

Three model building approaches were used in this study: (1) Full
Models, (2) Minimum Adequate Models, and (3) Shared Environ-
ments Models. Full Models included all the predictor variables (and
the relevant quadratic terms for GLMs) for each of the response varia-
bles. The Minimum Adequate Models were identified for GLMs using
a best subsets model building approach based on minimizing AIC
scores, and for GBMs using a backwards stepwise approach run
within a 10-fold cross-validation approach (implemented via the
gbm.simplify function; Elith et al., 2008). The Shared Environments
Model also selected variables to minimize AIC values (GLMs) or via a
backwards stepwise approach (GBMs) but had the additional con-
straint of being limited to predictor variables which had < 50 % of
plots as novel environments. Basing model selection on AIC scores
penalises complex models and can thus minimise overfitting which
can reduce model transferability for GLMs (Randin et al., 2006;
Wenger and Olden, 2012), while stepwise model building in GBMs
eliminates non-formative variables (Elith et al., 2008) and can, there-
fore, also be assumed to reduce the potential for overfitting. The Full
Models, Minimum Adequate Models and Shared Environments Mod-
els were built for each of the six response variables for each dataset,
for both modelling techniques, GLMs and GBMs.

2.5. Transferability

All 72 models (36 GLMs and 36 GBMs) were subsequently used to
predict richness in the other reserve, whereby the models built with
the Lapalala dataset (the training dataset) were used with the Welge-
vonden dataset (the testing dataset) to predict species richness in
Welgevonden, and vice versa. In order to further reduce the effect
that novel environments have on the transferability of the models,
the datasets were clamped per predictor variable, as clamping has
been shown to improve the overall accuracy of models when extrap-
olating (Capinha et al., 2018). Clamping is when any value from the
one dataset falling above the maximum or below the minimum val-
ues of the other dataset is ‘clamped’ to the maximum or minimum



Table 3
A summary of the GLMs transferability results that have been averaged across the three modelling approaches (Full Model, Minimum Adequate Model, and Shared Environ-
ments Model). The training dataset (L: Lapalala, W: Welgevonden) was used to build the model with which the testing dataset was then used to predict richness. The
adjusted deviance explained (adj. DE) values are for these models and the R2 values are for the linear models that were used to test transferability. See Table D4 in Appendix
D for details on each individual model.

Richness
variable

Training
dataset

Average adj.
DE (%)

Testing
dataset

Average unclamped
slope estimate

Average unclamped
p-value

Average
unclamped R2

Average clamped
slope estimate

Average clamped
p-value

Average
clamped R2

Total species L 22.7 W �0.012 0.701 0.003 0.030 0.505 0.008
W 43.2 L �0.069 0.133 0.014 �0.072 0.099 0.016

Grass species L 11.5 W �0.122 0.660 0.006 0.086 0.142 0.046
W 40.1 L �0.155 0.064 0.029 �0.152 0.039 0.034

Herb species L 9.0 W �0.031 0.282 0.021 �0.032 0.288 0.022
W 39.4 L �0.007 0.600 0.002 0.010 0.674 0.001

Woody species L 46.1 W 0.081 0.494 0.118 0.155 0.009 0.202
W 61.1 L 0.084 0.095 0.031 0.081 0.103 0.028

Family L 32.3 W �0.111 0.010 0.124 0.199 0.005 0.151
W 39.8 L 0.131 0.047 0.093 0.124 0.042 0.084

Genus L 21.3 W �0.104 0.213 0.028 �0.036 0.475 0.009
W 46.7 L �0.088 0.089 0.021 �0.115 0.022 0.036
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value, respectively. Therefore, the models were tested for transfer-
ability twice, first with the raw (i.e. unclamped) dataset as the testing
dataset and second with the clamped dataset as the testing dataset. A
linear model was then used to compare predicted and observed rich-
ness values, as a measure of the transferability of the models. The
analyses were conducted using R software (R Core Team, 2021), with
GBMs built using functions from the dismo (Hijmans et al., 2022;
Elith et al., 2008) package.

3. Results

Transferability of richness models was consistently poor, regard-
less of how well the models performed in the area they were cali-
brated in and irrespective of the modelling approach used for both
the GLMs and GBMs. Due to the strong similarities in the results from
the GLMs and the GBMs, just GLM results are reported below, with
GBM results reported in detail in Appendix E.

3.1. Model building

The adjusted deviance explained (adj. DE) for the GLMs for the
reserves they were trained in ranged from 4.1 % to 64.4 % (Table 3
and Table D4 in Appendix D). The richness variable for which the
GLMs performed the best were the models trained with the Welge-
vonden dataset for woody richness (mean adj. DE = 61.1 % averaged
across the three modelling approaches; Table 3). In contrast, the
GLMs which performed the worst were for herb and grass richness in
the Lapalala dataset (mean adj. DE = 9.0 % and 11.5 %, respectively;
Table 3).

For both the Lapalala and Welgevonden datasets, the Minimum
Adequate Model approach performed best for predicting species rich-
ness in the reserve in which the model was trained for all the models,
except one (for GLMs). For this one model (family richness, in the
Welgevonden dataset) the Shared Environments Model had the high-
est adj. DE value, but also a slightly higher (<1 unit different) AIC
value compared to the Minimum Adequate Model. Shared Environ-
ments Models outperformed Full Models approximately 60 % of the
time, to be the second best modelling approach (Table D4 in Appen-
dix D).

The predictor variables included in the greatest number of GLMs
overall were soil pH (33 out of 36 models) and soil carbon (29 mod-
els) and were, thus, consistently important for both the Lapalala and
Welgevonden datasets. In addition, rock cover was important when
predicting richness in Lapalala (occurring in 16 out of 18 Lapalala
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models) and curvature, TWI, woody debris cover, and calcium were
important in Welgevonden (occurring in 15, 15, 16, and 14 out of 18
Welgevonden models, respectively). The majority of the predictor
variables (c. 60 %) exhibited the same relationship with the response
variables for >60 % of the models where it was included in both data-
sets (Table D3 in Appendix D). Elevation, curvature, PDIR, rock cover,
leaf litter cover, soil pH, calcium, and sodium exhibited positive rela-
tionships for majority of the models across the two datasets; and TWI
and bare soil cover exhibited negative relationships for majority of
the GLMs.

3.2. Transferability

All the models displayed poor transferability, using both the
unclamped and clamped datasets to predict richness (Fig. 2 and
Table 3; see Table D4 in Appendix D for more details, and Appendix E
for GBM results). The majority of the GLMs (26 using the unclamped
testing dataset and 22 using the clamped testing dataset) did not per-
form better than chance (i.e. p > 0.05). None of the slope estimate
values from the linear models were close to 1 (the highest value
being 0.3), and 57 % of the model outputs had negative slope values
(of which 22 % were significant) (Fig. 2). The majority of the GBMs
performed better than random (p < 0.05 for 49 out of 72 GBMs for
the relationship between predicted and observed richness), all of
which had positive relationships. Only four (out of 72) GBMs had
negative relationships (all of which did not perform better than ran-
dom). However, consistent with the GLMs, slope estimate values
were not close to one (the highest value being 0.4) and the R2 values
were low (the highest being 0.44; details in Appendix E).

The measures of richness which displayed the best transferability
from the GLMs, albeit weak, were woody species richness and family
richness, as they showed more positive than negative slope values
from their models. For woody species richness 83 % of outputs had a
positive slope estimate, of which 80 % were significant, while all the
outputs with a negative slope estimate were not significant.

Clamping the testing dataset improved transferability (i.e. dis-
played a slope estimate closer to 1) for 23 out of 36 GLMs. For 16 of
those 23 models, the clamped dataset models also displayed a higher
R2 value. However, of those 16 models, the predictions from only 7
models were significantly better than random (p-value < 0.05).

In contrast to modelling richness in training datasets, of the three
modelling approaches, Shared Environments Models displayed the
best, albeit weak, transferability for majority of the richness response
variables. These models performed best (i.e. had a slope estimate



Fig. 2. Comparing the predicted and observed richness values for the three different models (1: Full Model, 2: Minimum Adequate Model, 3: Shared Environments Model). The
training dataset is the dataset used to build the models. The red lines are the unclamped dataset’s predicted richness against the observed richness, and the blue lines are the
clamped dataset’s predicted richness against observed richness (solid line: the output was statistically significant [< 0.05], dashed line: the output was not statistically significant).
The black dashed horizontal line is at y = 0. All the y-axes and x-axes have the same range (30 units).
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closer to 1) for nine of the GLMs (four for Lapalala and five for Welge-
vonden) when using the unclamped testing dataset and for nine
GLMs (five for Lapalala and four for Welgevonden) when using the
clamped testing datasets (Table 4).

4. Discussion

The transferability of all the richness models were consistently
poor, despite the close proximity of Welgevonden and Lapalala and
their similarity in vegetation types and geology. The performance of
GLMs and GBMs in training sites varied considerably (GLM: maxi-
mum adj. DE = 64 %; GBM: maximum Pearson correlation [10-fold
cross validation] = 0.70). The Minimum Adequate Model approach
performed best, likely as this technique chose models with the lowest
AIC, thereby balancing minimizing overfitting and maximizing
explanatory power (Lauria et al., 2015; Randin et al., 2006). Shared
Environments Models on average outperformed Full Models,
highlighting that models which include all available predictor varia-
bles may not produce the best results (in agreement with Feng et al.,
2019; Warren et al., 2014). Therefore, model building techniques are
useful for determining the optimal set of predictor variables to
account for variation in the response variable which, in turn, can
reduce model complexity and improve transferability.
233
When comparing growth forms, models for woody species rich-
ness on average performed best, while the models for herb and grass
species richness on average performed considerably worse. This dis-
crepancy could be due to how species were delimited into these three
groups. The woody species richness variable contained all the shrub
and tree species, and therefore contained only species with approxi-
mately similar growth forms (albeit across a range of genera and fam-
ilies). In contrast, the grass species richness variable contained just
the species within Poaceae, but excluded some species with similar
growth forms (e.g. Cyperaceae species). Herb species richness con-
tained all other species, such as herbaceous, fern, succulent and geo-
phyte species (i.e. a variety of growth forms). The herb species
richness thus, could be especially difficult to predict because two sites
which have the same number of total herb species but contain differ-
ent growth forms (e.g. one site has several geophyte species and no
succulent species, whereas the other site has several succulent spe-
cies but no geophyte species) could experience very different envi-
ronmental conditions. If plant species are delimited into groups
containing similar growth forms (i.e. more refined growth form cate-
gories, especially for herbaceous species), this might improve the
performance of these models.

The variables that were most consistently important for predict-
ing plant richness were two soil variables, soil pH and carbon. Other



Table 4
The best of the three GLM types (1: Full Model, 2: Minimum Adequate Model, 3: Shared Environments Model) for each richness response variable for the Lapa-
lala (L) and Welgevonden (W) datasets, per the unclamped and clamped testing datasets. The best model was the model with the slope estimate closest to one.
Also indicated is if this model had the highest R2 value of the three models (if not then the model that did have the highest R2 value is shown in brackets) and if
this model was statistically significant.

Richness variable Training dataset Unclamped dataset Clamped dataset

Best model Highest R2? Statistically significant? Best model Highest R2? Statistically significant?

Total species L 3 Yes No 3 Yes No
W 2 Yes No 2 No (3) No

Grass species L 1 No (2) No 1 Yes No
W 3 No (2) No 3 No (2) No

Herb species L 2 Yes No 3 No (2) No
W 3 No (2) No 3 Yes No

Woody species L 3 Yes Yes 3 Yes Yes
W 3 Yes Yes 2 No (3) Yes

Family L 3 Yes Yes 3 No (2) Yes
W 3 Yes Yes 3 Yes Yes

Genus L 3 No (2) No 3 No (1) No
W 3 No (2) No 3 No (2) Yes
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studies have also shown soil conditions to be important when model-
ling vascular plant species richness or individual plant species distri-
butions (Bertrand et al., 2012; Chauvier et al., 2021; Coudun et al.,
2006; Dubuis et al., 2013; Lobo et al., 2001; Scherrer and Guisan,
2019). Specifically, both Gould and Walker (1997) and Costanza et al.
(2011) report soil pH as being the best predictor of plant species rich-
ness in their studies. Soil pH had a positive linear relationship with
the species richness variables for 52 % of the models in this study, in
agreement with Gould and Walker (1997), and a negative quadratic
relationship (i.e. an inverted ‘U’ shaped graph) in 36 % of the models
(in line with Costanza et al., 2011). Therefore, soil conditions are an
important factor that should be used in plant richness models where
possible.

4.1. Transferability

The transferability of all the GLMs and GBMs, across six different
richness response variables and six different combinations of model-
ling techniques, was consistently poor, regardless of their perfor-
mance in explaining richness in the reserve in which they were
calibrated. Similarly, poor transferability has been reported in the lit-
erature for alpine plant species (Randin et al., 2006), for fish species
across western United States of America (Wenger and Olden, 2012),
for dung beetle species richness across the Iberian Peninsula (Hortal
and Lobo, 2011) and for other species, including amphibians, reptiles,
mammals and fungi, across a range of scales, including global, conti-
nental, and country scales and across oceanic islands (Capinha et al.,
2018). However, poor transferability is not universally observed, and
good model transferability has been observed, including for plants
(e.g. Peterson et al., 2003).

One potential reason for poor model transferability is where mod-
els are overfitted, which can occur from the choice of statistical tech-
nique and the number of predictor variables (Capinha et al., 2018; Liu
et al., 2020; Randin et al., 2006; Sequeira et al., 2016; Wenger and
Olden, 2012). However, GLMs are considered robust to overfitting
(Capinha et al., 2018; Lauria et al., 2015; Randin et al., 2006; Wenger
and Olden, 2012) and the Minimum Adequate Models approach
(applied here for both GLMs and GBMs) avoids overfitting by penalis-
ing complex models (Lauria et al., 2015; Randin et al., 2006; Wenger
and Olden, 2012). Indeed, in this study Minimum Adequate Models
did show better transferability than the more complex Full Models,
in agreement with Randin et al. (2006) and Wenger and Olden
(2012).
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A second potential reason for poor transferability in this study is
that some predictor variables used here are proxies for, and not direct
measurement of, ecophysiologically-relevant environmental varia-
bles. As the relationship between proxy variables and the variables
that they are assumed to represent may vary through space (e.g. ele-
vation is a proxy for temperature, but thermal lapse rate can vary
with humidity; Bonan, 2002), the utility of proxy variables for pre-
dicting biological patterns will be affected by how strongly and con-
sistently they are linked to ecophysiologically-relevant variables
under different conditions (Austin, 2002; Randin et al., 2006). For
example, in this study, TWI was used as a proxy for soil moisture, but
it is not a direct measure of water available in the soil (Kopeck�y et al.,
2021; Riihim€aki et al., 2021) and the TWI-soil moisture relationship
may differ between soil types and seasons (Sørensen et al., 2006).
This use of proxy variables could therefore have contributed to limit-
ing the transferability of these models and using variables which are
more accurate measures of in-field conditions could potentially
improve model transferability.

A third possible reason for poor transferability may be the extent
of novel environments in the testing dataset (Hortal and Lobo, 2011;
Low et al., 2020; Parmentier et al., 2011; Randin et al., 2006). Even
after removing variables with more than 50 % of their sites as novel
environments, the remaining variables had an average of 11 % (rang-
ing from 1 % to 37 %; Lapalala dataset) and 3 % (ranging from 0 % to
17 %; Welgevonden dataset) of their sites as novel environments. The
two approaches that were implemented in this study to reduce the
influence of novel environments (the use of the Shared Environments
Model and clamping the testing datasets when predicting richness)
both only slightly improved model transferability. This suggests that
even the small proportion of novel environments present possibly
still limits the transferability of the richness models. This result is
similar to Hortal and Lobo (2011) who found poor transferability of
models to testing areas with only slight differences (c. 12 % difference
in training and testing datasets) in the environmental conditions
compared to the training areas. Clamping the testing data is also use-
ful to avoid extreme predictions when novel environments are pres-
ent but will likely still be less accurate than predicting to testing
areas with no novel environments (Capinha et al., 2018). Therefore,
when the aim of the study is to predict to unsampled areas, it is
advisable to select the training area carefully to incorporate the full
range of environmental conditions present in the testing area, which,
in turn, would avoid having to remove variables due to novel envi-
ronments. Indeed, sampling areas of pronounced landscape-scale
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heterogeneity that encompass large abiotic gradients should poten-
tially be a priority for studies aiming to develop broadly transferable
models.

A different type of mechanism which could account for the rela-
tionships between environmental predictor and richness response
variables not being conserved between training and testing areas,
and thus also potentially contributes to poor transferability, was pro-
posed by Hortal and Lobo (2011) and focuses on the aggregative
nature of species richness. The authors highlight that species richness
is the sum of the occurrence patterns of different species, with each
species potentially responding differently to multiple components in
the environment. Therefore, even if a relationship between the spe-
cies richness and the predictor variables can be identified (i.e. the
model performs well in the area in which it was calibrated), these
relationships could be different in the testing area due to differences
in species composition, with, for example, potentially different
growth forms and different life histories and, in consequence, differ-
ent responses to environmental conditions exhibited by the species
in the two areas (Hortal and Lobo, 2011). This may contribute to poor
transferability in this study as there is a relatively low proportion of
shared species between the reserves (35 % for Welgevonden and 36 %
for Lapalala; Jaccard similarity index of 0.21). Moreover, in this study
system the proportion of shared taxa increases with taxonomic level,
potentially explaining why the transferability of family richness mod-
els was better than the transferability of genus and species richness
models.

The difficulty in predicting plant species richness to other areas,
due to the differences in species assemblages, could potentially be
overcome by predicting species richness per growth form. Indeed,
woody richness models displayed some of the best transferability,
and the poorer performance of grass and herb species richness mod-
els might improve if the plant growth forms are better delimited (e.g.
based on a finer division of growth forms, including geophytes, suc-
culents and ferns as separate growth forms, since they potentially
represent unique biotic and abiotic conditions). Plant growth forms
are a simple way to distinguish plant functional groups and predict-
ing their distribution potentially provides a clearer indication of the
spatial patterns of the different growth forms in habitats and the rela-
tive composition of species within communities instead of just a sin-
gle value of species richness (McNellie et al., 2021).

4.2. Steps to improve the transferability of models

The success of the transferability of models relies on the ability of
the models to find causal relationships between the response and
predictor variables, and on this relationship being conserved through
space, including in novel environments (Capinha et al., 2018; Hortal
and Lobo, 2011). Therefore, when developing models with the aim of
predicting to unsampled areas, if novel environments in the testing
area can be minimized, or avoided completely, that would be the
best option to improve the transferability of biodiversity models.
Sequeira et al. (2016) found good model transferability when predict-
ing reef fish species richness from the larger Great Barrier Reef to a
smaller reef which had a range of environmental conditions that fell
within the Great Barrier Reef’s environmental conditions. Similar
results of model transferability being successful from one area to
another but not the reverse, due to different predictor variable
ranges, were also reported for fish species in the Baltic Sea (Sundblad
et al., 2009). Therefore, it is suggested that when data is needed to
model to unsampled areas, data collection should, where possible,
include the full range of the environmental variables to minimize the
effects of novel environments on model transferability. This does not
necessarily require the sampling of a very large area but rather could
be achieved by sampling two areas with different environmental con-
ditions and then compiling the datasets together to create a calibra-
tion dataset that spans a wide range of conditions.
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